Integrated Math 3
Unit 1: Analytic Geometry
1.12

Name: \qquad
Date: \qquad Period: \qquad

Objective: Write and graph a circle given a center and radius.

Warm Up:

Find the arc length and the area of a sector if given a 40° arc of a circle with a radius of 6 cm .

Are Length:

$$
\frac{S}{12 \pi}=\frac{40^{\circ}}{360^{\circ}}
$$

$$
S=\frac{40(12 \pi)}{360}
$$

$$
s=\frac{4 \pi}{3}
$$

Sector Area:

$$
\begin{aligned}
& \frac{A}{36 \pi}=\frac{40^{\circ}}{360^{\circ}} \\
& A=\frac{40(36 \pi)}{360} \\
& A=4 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { Standard Form for a Circle: } \\
& \qquad(x-h)^{2}+(y-k)^{2}=r^{2} \\
& \text { Center: }(h, K) \text { Radius: }
\end{aligned}
$$

Example 1: Determine the center and the radius of the circle
A.) $x^{2}+y^{2}=36$
Center: $(0,0)$
B.) $x^{2}+y^{2}=49$
C.) $\frac{25-x^{2}=y^{2}}{+x^{2}+x^{2}}+x^{2}+y^{2}=25 ~$
center: $(0,0)$
radius: 6
D.) $(x-2)^{2}+(y-8)^{2}=25$
E.) $(x+4)^{2}+(y-3)^{2}=16$
F.) $(x+8)^{2}+(y+10)^{2}=36$
Center: $(2,8)$
radius: 5
Center: $(-4,3)$
radius: 4
center: $(-8,-10)$
radius: 6

Example 2: Write the equation of a circle given the following information:
A.) Center: $(0,0)$
Point: $(-5,0)$

$$
x^{2}+y^{2}=25
$$

B.) Center: $(4,5)$
Radius: 4

$$
(x-4)^{2}+(y-5)^{2}=16
$$

Example 3: Given the equation of a circle, create its corresponding graph. Then draw in a diameter and list its endpoints.
center: $(0,0)$

$$
\text { center: }(3,-2)
$$

A.) $x^{2}+y^{2}=25$ radius: 5

diameter endpoints:
$(5,0)$ and $(-5,0)$
C.) $x^{2}+(y-4)^{2}=16$

Center: (0.4) radius: 4

Diameter endpoints:
$(0,0)$ and $(0,8)$
B.) $(x-3)^{2}+(y+2)^{2}=1$
radius: 1

diameter endpoints:

$$
(3,-1) \text { and }(3,-3)
$$

D.) $(x-2)^{2}+(y-3)^{2}=4$

Center: $(2,3)$ radius: 2

diarnetor endpoints:

$$
(0,3) \text { and }(4,3)
$$

