\qquad
\qquad Period: \qquad

Objective: Writing and graphing equations of parabolas

Warm Up: Given the circle equation: $x^{2}+y^{2}+4 x-6 y+9=0$
A.) Determine the center
B.) Determine the radius
C.) Determine the area
D.) Determine the circumference

Key Terms:

Parabola: a relation that has the property that any point on it is equidistant from a point called the focus and a line called the directrix.

Vertex: a point that lies halfway between the focus and directrix

Focus: a point that lies on the axis of symmetry (every point lying on parabola is equidistant to the focus)

Directrix: a line that is perpendicular to the axis of symmetry

Axis of Symmetry: a line that cuts the parabola in half

Parabolas have an awesome property such that the \qquad from the vertex to the focus \& the
\qquad from the vertex to the directrix is \qquad . We call this distance \qquad —.

When a parabola opens up or down

$$
(x-h)^{2}=4 p(y-k)
$$

When a parabola opens right or left

$$
(y-k)^{2}=4 p(x-h)
$$

Example 1: Determine the direction the parabola opens \& draw a brief sketch.
A.) $8 y=x^{2}$
B.) $-x=y^{2}$
C.) $-4 y=x^{2}$
D.) $2 x=y^{2}$

Example 2: Graph each parabola and list the vertex, p-value, focus, and directrix.
A.) $(y-4)^{2}=8(x+2)$
B.) $(x+3)^{2}=-12(y-3)$

Vertex:
p-value:

Focus:

Directrix:

Vertex:
p-value:

Focus:

Directrix:

C.) $(y+3)^{2}=-16(x-5)$
D.) $(x-6)^{2}=6 y$

Vertex:
p-value:
Focus:

Directrix:

Vertex:
p-value:

Focus:

Directrix:

Example 3: Analyze the following graphs in order in order to provide the missing information.
a.)

b.)

Directrix:
Focus:

Equation:
Equation:

