Integrated Math 3
Unit 3: Representing Functions

Name: \qquad
Date: \qquad Period: \qquad

Objective: Determining whether a function is even, odd, both, or neither.
Warm Up: Analyze the key features of the following graph.

Rel max: $(-4,2),(0,3),(4,2)$ Rel min: $(-2,0),(2,0)$
Abs max: $(0,3) \quad$ Alos min: $(-2,0),(2,0)$

Maximums/Minimums:

Increasing:

$$
(-2,0) \cup(2,4)
$$

Decreasing: $(-4,-2) \cup(0,2)$

$$
\begin{aligned}
\text { Intercepts: } & x \text {-int: }(-2,0),(2,0) \\
& y \text {-int: }(0,3)
\end{aligned}
$$

Domain:

$$
\text { Range: }[0,3]
$$

Even Functions:

The following graphs are all even functions:

What do they all have in common?
They"re symmetric over the y-axis.

odd Functions:

The following graphs are all odd functions:

memandrenahicom

© Elation Picul

What do they all have in common?
They are symmetric about the origin - If you put a pin at the origin and rotated it 180, there would be the same image.

Examples

1. Classify the function as even or odd, then draw in the line or point of symmetry.
Even - Symmetric over the y-axis

2. Given that the function below is odd, complete the table. Use the graph to verify your results.

x	y
-5	1
-3	2
-1	5
0	9
1	-5
3	-2
5	-1

$(x, y) \rightarrow(-x,-y)$

3. Given that the function below is even, complete the table. Use the graph to verify your results.

x	y
-5	1
-3	2
-1	5
0	9
1	5
3	2
5	1

4. Given the graph below is odd, complete the graph.

5. Given the graph below is even, complete the graph.

Reflection:

1. What is the difference between an even and an odd function?

Even functions have symmetry over the y-axis whereas odd functions are Symmetric about the origin.
2. Is it possible for a function to be both even and odd?

Yes!
3. Does the degree of the polynomial indicate whether a function is even or odd?

No - we must do some analysis in order to mare a decision.

