Integrated Math 3
Name:
Unit 4: Representing Functions
3.4

Part I Objective: To discover patterns in graphing.

Warm up: What is the difference between even and odd functions?

Using your graphing calculator, graph each of the following equations - you can get the absolute value on your calculator by pressing the MATH key, then arrow over to NUM and your first choice should be abs(then just press ENTER. Be sure to close your parenthesis when the absolute value ends.

Let s look at what happens when we add a number to the outside of the function:

What happens to the graph if you add a number to the outside of the function? Be very specific in how it changes based off of the provided equation.

Let's look at what happens when we add a number to the inside of the function:

What happens to the graph if you add a number to the inside of the function? Be very specific in how it changes based off of the provided equation.
\qquad
\qquad
\qquad
Let's look at what happens when we multiply a number to the function:
7. $f(x)=3|x|$

What happens to the graph when you multiply a number to the function? Be very specific in how it changes based off of the provided equation.

Let's see if this is true for quadratic equations.

16. $g(x)=2 x^{2}$

18. $g(x)=-3(x)^{2}$

Explain the similarities and differences in the patterns between absolute value functions and quadratic functions. If there are none, write none.

	Similarities	Diferences
$f(x)=\|x\|$ and $g(x)=x^{2}$		
$f(x)=\|x\|+k$ and $g(x)=x^{2}+k$		
$f(x)=\|x+k\|$ and $g(x)=(x+k)^{2}$ $f(x)=k\|x\|$ and $g(x)=k x^{2}$		

Warm Up:

1. Identify the distance each of the following values is from zero:
6
-6
3
-3
4
-4
2. Identify the center of the circles given their equations.

$$
(x-3)^{2}+(y+2)^{2}=9 \quad x^{2}+(y-5)^{2}=16
$$

What is an Absolute Value Function?

An absolute value function, when graphed, is a function consisting of two rays whose ends meet at a common point, called the vertex, and extend into a " v " shape.

Some Fun Facts A bout Absolute Value Functions:

- Absolute value functions are \qquad around the y-axis
- For every point (x, y) existing on the graph, there exists the point \qquad
- The vertex \qquad also indicates a \qquad and/or a \qquad
- The coefficient \qquad in front of the absolute value signs indicates the:

0 \qquad of the two rays, which describes the overall \qquad of the function

- \qquad of opening

Example 1: Identify the vertex, the steepness of the function and the direction of opening given the following absolute value functions:
A.) $y=|x|$
B.) $y=3|x|-2$
C.) $y=2|x-4|+3$
D.) $y=|x+5|+1$
E.) $y=-|x-1|+6$
F.) $y=-\frac{1}{2}|x+2|+2$

Example 2: Write an absolute value function given the following properties.
A.) Has a vertex located at $(-3,5)$
B.) Has a vertex located at $(0,-2)$ and opens down
C.) Has a vertex at $(0,0)$ and has rays with slopes of 3
D.) Has a vertex at $(-4,0)$, opens down and has rays with slopes of $\frac{1}{2}$
E.) Has a vertex at $\left(-3,-\frac{1}{2}\right)$ and has rays with slopes of 2

Example 3: Given the graph of the absolute value function, identify the vertex, direction of opening, and the slopes of the rays. Explain how the graph transformed from the original $y=|x|$ graph. Finally, write an equation representing the graphed function.

Slopes of Rays:
Direction of Opening:
B.)

Vertex:

Slopes of Rays:
Direction of Opening:

Equation:
D.)

Vertex:
Direction of Opening:
Slopes of Rays:
Transformations:
B.)

Vertex: Direction of Opening:
Slopes of Rays: Transformations:

Equation:
C.)

Vertex:
Direction of Opening:
Slopes of Rays:
Transformations:
Equation:
E.)

Vertex:

Slopes of Rays:

Direction of Opening:
Transformations:

Equation:

