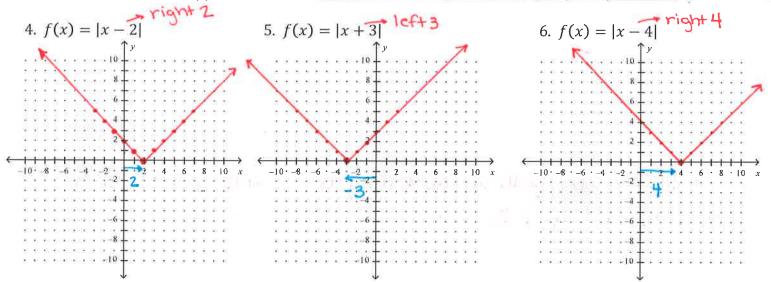

Integrated Math 3 Unit 3: Representing Functions 3.4

Name:	
Date:	Period:

Part I Objective: To discover patterns in graphing.

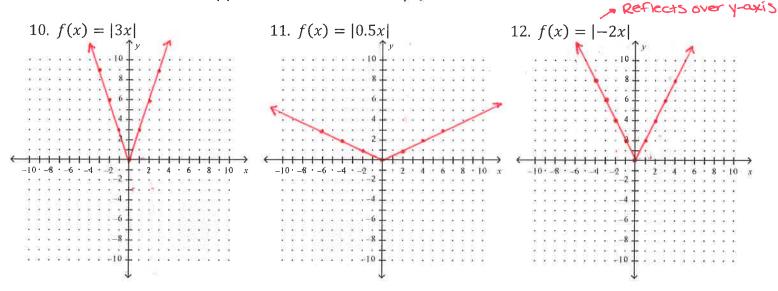
Warm up: What is the difference between even and o	dd function	s?		
Even functions are symmetric about the	u-axis	whereas	odd functions	
are summetric about the origin.	1 -11-			
- an symptom no my.				_


Using your graphing calculator, graph each of the following equations – you can get the absolute value on your calculator by pressing the MATH key, then arrow over to NUM and your first choice should be abs(then just press ENTER. **Be sure to close your parenthesis when the absolute value ends**.

What happens to the graph if you add a number to the outside of the function? Be very specific in how it changes based off of the provided equation.

polics a vertical shift - if we're adding value outsid that many writs up function, it moves it down that

Let's look at what happens when we add a number to the inside of the function:

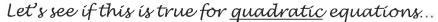


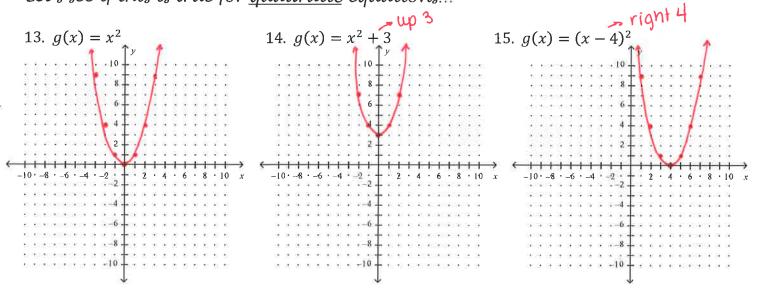
What happens to the graph if you add a number to the inside of the function? Be very specific in how it changes based off of the provided equation.

It applies a havitantal shift-we always do the apposite of the sign when its inside • If adding, more to the left that many units • If subtracting, more to the right that many writs. Let's look at what happens when we <u>multiply a number</u> to the function: 7. f(x) = 3|x| $m=\pm 3$ 8. f(x) = 0.5|x| $m=\pm \pm 2$ 9. f(x) = -2|x| Stretches by 2 10^{+} $10^$

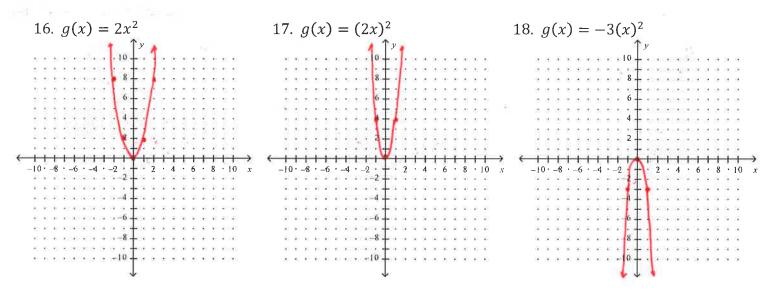
What happens to the graph when you multiply a number to the function? Be very specific in how it changes based off of the provided equation.

It determines the slope or steepness of a function and the direction of opening. • If we're multiplying by a negative, it opens down; if multiplying by a positive, opens Up • If it's bigger than 1, it stretches (or narrows) the graph; if smaller than 1, it Compresses (or widens) the graph in the Y-direction Let's look at what happens when we <u>multiply a number within the function</u>:




What happens to the graph when you multiply a number within the function? Be very specific in how it changes based off of the provided equation.

1, it compresses it in the x-direction the number is bigger than number is smaller than 1, it stretches it in the x-direction


How do graphs #7-9 compare to graphs #10-12? Why do you think that happened?

They're identical.

Let's see if this is true for <u>quadratic</u> equations...

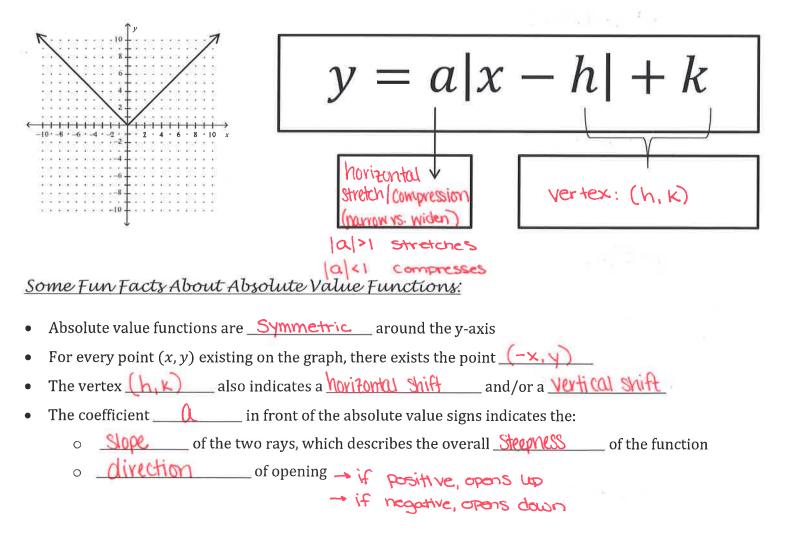
Explain the similarities and differences in the patterns between absolute value functions and quadratic functions. If there are none, write none.

1 (^{1 -} 2 - ₂	Similarities	Diferences
$f(x) = x \text{ and } g(x) = x^2$	end behavior kuways points in the Same direction on both sides vertex is at (0,0)	absolute Value function is formed by straight lines and has a Constarit slope whereas the quadratic is a vounded graph whose vate change
$f(x) = x + k \text{ and}$ $g(x) = x^2 + k$		al Program (- L _J s i)
$f(x) = x + k \text{ and}$ $g(x) = (x + k)^2$		
$f(x) = k x $ and $g(x) = kx^2$		
$f(x) = kx $ and $g(x) = (kx)^2$		

Part II Objective: Analyzing and writing absolute value functions.

<u>Warm Up:</u>

1. Identify the distance each of the following values is from zero:



2. Identify the center of the circles given their equations.

$(x-3)^2 + (y+2)^2 = 9$	$x^2 + (y - 5)^2 = 16$
Center: $(3, -2)$	center: (0,5)
radius. 3	radius: 4

What is an Absolute Value Function?

An absolute value function, when graphed, is a function consisting of two rays whose ends meet at a common point, called the vertex, and extend into a "v" shape.

Example 1: Identify the vertex, the steepness of the function and the direction of opening given the following absolute value functions:

A.) y = |x|B.) y = 3|x| - 2C.) y = 2|x - 4| + 3Vertex: (01-2) Vertex: (0,0) Vertex: (4,3) opens up Opens up opens up stretches by 2 in Stretches by 3 in the the y-direction Y-direction F.) $y = -\frac{1}{2}|x+2|+2$ D.) y = |x + 5| + 1E.) v = -|x - 1| + 6Vertex: (-5,1) Vertex: (-2.2) Vertex: (1,6) opens down Opens up opens down compresses by 1/2 in the y-direction

and the second second second

Example 2: Write an absolute value function given the following properties.

A.) Has a vertex located at (-3, 5)

Y= |x+3|+5

B.) Has a vertex located at (0, -2) and opens down

y=-1×1-2

C.) Has a vertex at (0, 0) and has rays with slopes of 3

y = 3|x|

D.) Has a vertex at (-4, 0), opens down and has rays with slopes of $\frac{1}{2}$

Y= - ± | ×+4|

E.) Has a vertex at $(-3, -\frac{1}{2})$ and has rays with slopes of 2

 $\gamma = 2 \left| x + 3 \right| - \frac{1}{2}$

Example 3: Given the graph of the absolute value function, identify the vertex, direction of opening, and the slopes of the rays. Explain how the graph transformed from the original y = |x| graph. Finally, write an equation representing the graphed function.

