Integrated Math 3
Unit 3: Representing Functions
3.9
a) Graph the function: $y=|x|$ on the coordinate plane provided.
b) Pretend there are no values to the right of the y-axis. Write an equation of the line left over.

Equation of the line to the left of y-axis:
c) Pretend there are no values to the left of the y-axis. Write an equation of the line left over.

Objective: What is a piecewise function?

Name: \qquad
Date: \qquad Period: \qquad

Equation of the line to the right of the y-axis:
d) Putting it all together:

For all negative x-values $(x<0)$ the function is:
For all positive x-values, and zero, $(x \geq 0)$ the function is: \qquad

Therefore, we have to different functions that make up one larger function together.

Vocabulary to Consider

Piecewise function: a function that is comprised of 2 or more functions, which have restrictions on their domains.

Domain: the set of x -values and/or inputs that are allowed
Restricted domain: the domain for each individual function within the piecewise function

What does a piecewise function look like?

Let's write a piecewise function to represent the identical meaning of an absolute value function:

Practice: Match the following piecewise functions to their graphs.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
$f(x)=\left\{\begin{array}{c}2 x+3 \text { if } x<0 \\ x^{2} \text { if } x \geq 0\end{array} \quad f(x)=\left\{\begin{array}{c}7 \text { if } x<-6 \\ -2 \text { if } x \geq-6\end{array} \quad f(x)=\left\{\begin{array}{c}5 \text { if } x \leq 6 \\ -4 \text { if } x>6\end{array} \quad f(x)=\left\{\begin{array}{c}x^{2} \text { if }-3<x \leq 5 \\ -2 \text { if } x \leq-3 \\ -7 \text { if } x>7\end{array}\right.\right.\right.\right.$

Integrated Math 3
Unit 3: Representing Functions
3.9

Name: \qquad
Date: \qquad Period: \qquad

Objective: Evaluate and write piecewise functions

Warm up: Given the functions $f(x)=2 x+3$ and $g(x)=4 x$, evaluate $f(1)$ and $g(2)$.

Part I: Evaluating

- Just as any function can be evaluated, evaluating a piecewise function comprises of finding the
\qquad for an indicated \qquad .
- However, since a piecewise function is comprised of multiple functions, you must look at the
\qquad before you evaluate the function.

Examples:

1. Given the piecewise function $f(x)=\left\{\begin{array}{c}2 x \text { if } x \geq 1 \\ -x+3 \text { if } x<1\end{array}\right.$

- Evaluate $f(-1)$
- Evaluate $f(1)$
- Evaluate $f(4)$

2. Given the piecewise function $f(x)=\left\{\begin{array}{l}\frac{1}{2} x+\frac{3}{2} \text { if } x<-1 \\ -x+3 \text { if } x \geq-1\end{array}\right.$

- Evaluate $f(1)$
- Evaluate $f(-1)$
- Evaluate $f(-3)$

Part II: Writing (How to Write a Piecewise from a Graph)

Answer the following questions based on the given graph.

1. What type of function is graphed?
2. How many equations are drawn? Label each equation with a letter (A, B, etc.)
3. For the equation labeled equation A
a) What x-values are being graphed?
b) Is there a "closed dot" or an "open dot"?

c) What restricted domain can you write using parts $\mathrm{a} \& \mathrm{~b}$?
d) If you were to write an equation of the line drawn, what would you write?
4. For the equation labeled equation B
a) What x-values are being graphed?
b) Is there a "closed dot" or an "open dot"?
c) What restricted domain can you write knowing parts $\mathrm{a} \& \mathrm{~b}$?
d) If you were to write an equation of the line drawn, what would you write?
5. For the equation labeled equation C
a) What x-values are being graphed?
b) Is there a "closed dot" or an "open dot"?
c) What restricted domain can you write knowing parts $\mathrm{a} \& \mathrm{~b}$?
d) If you were to write an equation of the line drawn, what would you write?
6. Putting together questions $3 \mathrm{c}, \mathrm{d}, 4 \mathrm{c}, \mathrm{d}$ and $5 \mathrm{c}, \mathrm{d}$, please construct the piecewise function that is graphed.

In conclusion, a piecewise function must include:

- Function notation
- A separate equation for each "part" of the graph.
- A restricted domain for each "part" of the graph---(what x-values are being included for each "part"?)

Examples: Write a piecewise function that corresponds to the graphs below.
a.

b.

c.

d.

