Integrated Math 3
Name: \qquad
Unit 4: Trig. Representations and Modeling 4.0

Date: \qquad Period: \qquad

Objective: To use basic right triangle trigonometry to find lengths of missing sides or missing angles.

Warm Up: What is SohCahToa, and how/why is it used?

$$
\text { Sine }=\frac{\text { opposite }}{\text { hypotenuse }} \quad \text { Cosine }=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \text { Tangent }=\frac{\text { opposite }}{\text { adjacent }}
$$

It is used to solve for missing side/angle measures for right triangles.

Vocabulary:

Right Triangle: A three-sided polygon that has one right angle and sides that are classified as legs or the hypotenuse.

Sine (sin): $\frac{\text { opposite }}{\text { hypotenuse }}$
Cosecant (csc): $\frac{\text { hypotenuse }}{\text { opposite }}$

Cosine (cos): adjacent
hypotenuse
Secant (sec): $\frac{\text { hypotenuse }}{\text { adjacent }}$

Tangent (tan):
$\frac{\text { opposite }}{\text { adjacent }}$
Cotangent (cot): $\frac{\text { adjacent }}{\text { opposite }}$

Example 1: Evaluate the trig functions based off of the given right triangles
A.) $\sec \theta$

B.) $\cot \theta$

C.) $\cos \theta$

$$
\cos \theta=\frac{14 \sqrt{2}}{21}=\frac{2 \sqrt{2}}{3}
$$

$$
\sec \theta=\frac{17}{15}
$$

$$
\cot \theta=\frac{4}{3}
$$

D.) $\csc \theta$

$$
\csc \theta=\frac{24}{110 \sqrt{2}}=\frac{3}{2 \sqrt{2}}
$$

E.) $\tan \theta$

$$
\tan \theta=\frac{3}{4}
$$

F.) $\sin \theta$

$$
\sin \theta=\frac{6}{7}
$$

*helps to draw a picture Example 2: Find the value of the trig function indicated. if not provided with one!
A.) Find $\csc \theta$ if $\tan \theta=\frac{3}{4}$
B.) Find $\cot \theta$ if $\sec \theta=2 / 1$

$$
1^{2}+b^{2}=2^{2}
$$

$$
b^{2}=3
$$

$$
\cot \theta=\frac{1}{\sqrt{3}}
$$

Example 3: Use your calculator to evaluate the trig function. Round to four decimal places. ${ }^{* * *}$ Make sure that your calculator is set to DEGREES for this section.***
A.) $\sin 15^{\circ}$
B.) $\cos 40^{\circ}$

$$
=0.2588
$$

D.) $\csc 20^{\circ}=1 / \sin 20^{\circ}$
F.) $\cot 80^{\circ}=1 / \tan 80^{\circ}$

$$
=2.9238
$$

C.) $\tan 50^{\circ}$

$$
=1.1918
$$

E.) $\sec 60^{\circ}=1 / \cos 60^{\circ}$

$$
=2
$$

$$
=0.7660
$$

$=0.1763$

Example 4:
A.) Find the missing sides and angles of Triangle ACT

$$
\angle C=180^{\circ}-90^{\circ}-23.6^{\circ}=66.4^{\circ}
$$

$$
\overline{A C}=25 . \sin 23.6^{\circ}=\frac{x}{25} .25
$$

$$
\begin{gathered}
\overline{A T}=25 . \cos 23.6=\frac{x}{25} \cdot 25 \\
x=22.9
\end{gathered}
$$

B.) Find the missing sides and angles of Triangle $A B C$

$$
\begin{gathered}
b=3^{2}+2^{2}=c^{2} \\
(\overline{A C})=c=\sqrt{13} \\
\angle A=\tan ^{-1} \tan A=\frac{\tan ^{-1} 3}{2} \\
A=\tan ^{-1}\left(\frac{3}{2}\right) \\
A=56.3^{\circ}
\end{gathered}
$$

$$
\angle C=\tan ^{-1} \tan C=\frac{\tan ^{-1}}{=} \frac{2}{3}
$$

$$
\underbrace{c}_{B} \frac{b \sqrt{13}}{56.3^{\circ}} \mathrm{A}
$$

$$
C=\tan ^{-1}\left(\frac{2}{3}\right)
$$

$$
C=33.7^{\circ}
$$

$$
\angle C=180^{\circ}-90^{\circ}-56.3^{\circ}=33.7^{\circ}
$$

C.) Find the missing sides and angles of Triangle ABC

$$
\angle B=180^{\circ}-90^{\circ}-35^{\circ}=55^{\circ}
$$

$$
\begin{gathered}
b(\overline{A C})=b \cdot \tan 35^{\circ}=\frac{7}{b} \cdot 6 \\
\frac{b \tan 35^{\circ}}{\tan 35^{\circ}}=\frac{7}{\tan 35^{\circ}} \\
b=\frac{7}{\tan 35^{\circ}} \\
b=10
\end{gathered}
$$

Reflect:
How do you know when to use sin or $\sin ^{-1}$?

Solving for a
side measure

$$
\begin{aligned}
& C(\overline{A B})= C \cdot \\
& \frac{\sin 35^{\circ}}{}=\frac{7}{6} \cdot 4 \\
& \frac{\sin 35^{\circ}}{\circ}=\frac{7}{\sin 35^{\circ}}
\end{aligned}
$$

$$
c=\frac{7}{\sin 35}
$$

$$
C=12.2
$$

