Period:

Objective: To use basic right triangle trigonometry to find lengths of missing sides or missing angles.

Warm Up: What is SohCahToa, and how/why is it used?

It is used to solve for missing side langue measures for right triangles.

Vocabulary:

Right Triangle: A three-sided polygon that has one right angle and sides that are classified as legs or the hypotenuse.

Sine (sin): Opposite

Cosecant (csc): hypotenuse

Cosine (cos): adjacent

Secant (sec): hypotenuse

Tangent (tan):

Cotangent (cot):

Example 1: Evaluate the trig functions based off of the given right triangles

A.) sec θ

D.) $\csc \theta$

$$28c\theta = \frac{24}{10\sqrt{2}} = \frac{3}{2\sqrt{2}}$$

E.) $\tan \theta$

$$tan\theta = \frac{3}{4}$$

F.) $\sin \theta$

Thelps to draw a picture if not provided with one!

Example 2: Find the value of the trig function indicated.

B.) Find cot
$$\theta$$
 if $\sec \theta = 24$

A.) Find
$$\csc \theta$$
 if $\tan \theta = \frac{3}{4}$

$$3^{2} + 4^{2} = c^{2}$$

$$c = 5$$

$$CSCO = \frac{5}{3}$$

$$\cot \theta = \frac{1}{\sqrt{3}}$$

<u>Example 3:</u> Use your calculator to evaluate the trig function. Round to four decimal places.

Make sure that your calculator is set to DEGREES for this section.

D.)
$$\csc 20^{\circ} = 1/\sin 20^{\circ}$$

= 2.9238

E.)
$$\sec 60^{\circ} = \frac{1}{\cos 60^{\circ}}$$

F.)
$$\cot 80^{\circ} = 1/\tan 80^{\circ}$$

$$= 0.1763$$

Example 4:

A.) Find the missing sides and angles of Triangle ACT

B.) Find the missing sides and angles of Triangle ABC

$$b = 3^{2} + 2^{2} = c^{2}$$
 $(AC) = C = \sqrt{13}$

$$A = \tan^{-1}(\frac{3}{2})$$

 $A = 56.3^{\circ}$

$$C = \tan^{-1}(\frac{2}{3})$$
 $C = \tan^{-1}(\frac{2}{3})$

OR

C.) Find the missing sides and angles of Triangle ABC

$$b(AC) = b. + tan 35° = \frac{7}{b}.b'$$
 $b + tan 35° = \frac{7}{b}.b'$
 $b = \frac{7}{tan 35°}$
 $b = \frac{7}{tan 35°}$

$$C(\overline{AB}) = {^{C}} \cdot \sin 35^{\circ} = \frac{1}{\alpha} \cdot \alpha$$

$$C(\overline{AB}) = {^{C}} \cdot \sin 35^{\circ} = \frac{1}{\alpha} \cdot \alpha$$

$$C(\overline{AB}) = {^{C}} \cdot \sin 35^{\circ} = \frac{1}{\alpha} \cdot \alpha$$

$$C = \frac{12 \cdot 2}{\sin 35^{\circ}} \cdot \alpha$$

$$C = \frac{1}{\sin 35^{\circ}}$$

$$C = \frac{1}{\sin 35^{\circ}}$$

Reflect:

How do you know when to use $\sin or \sin^{-1}$?

Solving for a Side measure Solving for an angle measure