Integrated Math 3
Unit 4: Trig. Representations and Modeling 4.3

Part I Objective: To convert radian and degree measures.

Warm Up: If there are 5280 feet in a mile, how much of a mile is 218 feet?

$$
218 \mathrm{ft} . \times \frac{1 \mathrm{mi}}{5280 \mathrm{ft}}=.0413 \mathrm{mi}
$$

What is a radian?

- A radian is another method of describing an angle measure (previously we only used degrees to measure angles).
- One radian $=$ the measure of an angle whose intercepted arc is the length of the radius.

Having a conversion factor allows us to convert between two units

Background Knowledge:

1. How many degrees are in a circle? \qquad
2. How do you find circumference of a circle? $C=2 \pi r$
3. Using the circumference formula above, what is the EXACT circumference of a circle with radius of 1? $C=2 \pi(1)=2 \pi$
4. Therefore we can say $\underline{360}$ degrees $=2 \pi$ radians

$$
\frac{360^{\circ}}{2 \pi \mathrm{rad}}=\frac{180^{\circ}}{\pi \mathrm{rad}}
$$

Rewrite a degree measure in radians by multiplying by $\frac{\text { radians }}{180}$
Rewrite a radian measure in degrees by multiplying by $\frac{180}{\text { radians }}$

Example 1: Convert the degree measure to radians.
A.) 110°
B.) 45°
C.) 320°
$110^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{11 \pi}{18}$

$$
45^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{\pi}{4}
$$

$320^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{16 \pi}{9}$
D.) 225°
$225^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{5 \pi}{4}$
E.) 330°
$330^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{11 \pi}{6}$
F.) -45°
$-45^{\circ} \times \frac{\pi}{180^{\circ}}=-\frac{\pi}{4}$

Example 2: Convert the radian measure to degrees.
A.) $-\frac{\pi}{9}$
B.) $-\frac{5 \pi}{12}$
$-\frac{\pi}{9} \times \frac{180^{\circ}}{\pi}=-20^{\circ}$
$\frac{-5 \pi}{12} \times \frac{180^{\circ}}{\pi}=-75^{\circ}$
C.) $\frac{28 \pi}{3}$
$\frac{28 \pi}{3} \times \frac{180^{\circ}}{\pi}=1680^{\circ}$
D.) $\frac{2 \pi}{3}$
$\frac{2 \pi}{3} \times \frac{180^{\circ}}{\pi}=120^{\circ}$
E.) $-\frac{3 \pi}{2}$
$\frac{-3 \pi}{2} \times \frac{180^{\circ}}{\pi}=-270^{\circ}$
F.) $\frac{5 \pi}{6}$

Part II Objective: To analyze coterminal and reference angles.

vocabulary:

Angle: A shape composed of two rays with a common endpoint, known as the vertex.
Standard Position: An angle whose vertex is at the origin and whose initial side is the positive x-axis.
Initial Side: The ray of the angle that is "fixed".
Terminal Side: The ray of the angles that gets rotated about the vertex.
Coterminal: Two angles that are in standard position, whose terminal sides end at the same location.
Reference Angles: An angle (always acute in measure) formed by the terminal side and the x-axis.
Quadrantal Angle: An angle whose terminal side lies on an axis.

Fill in the blank:

Use the graph to complete each of the following
a. The initial side of an angle is always on the positive x-axis
b. When analyzing angles, positive angles are measured in a Counter-Clockwise direction and negative angles are measured in a \qquad
direction.

c. The angle above can be estimated to be \qquad or -315°

Angles in standard position

Example 1: Draw the following angles in standard position. Then tell which quadrant the terminal side lies in.
$\xrightarrow{\text { A.) } 120^{\circ}}$
Coterminal Angles
B.) -45°
C.) $510^{\circ}-360^{\circ}=150^{\circ}$
D.) $-\frac{5 \pi}{6} \times \frac{180^{\circ}}{\pi}=-150^{\circ}$

Example 2: Determine the positive and negative coterminal angles of the given angle in degrees and radians.
A.) $120^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{2 \pi}{3}$
B.) $45^{\circ} \times \frac{\pi}{180}=\frac{\pi}{4}$
C.) $210^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{7 \pi}{6}$
D.) $\frac{\pi}{6} \times \frac{180^{\circ}}{\pi}=30^{\circ}$

Positive: $120^{\circ}+360^{\circ}=480^{\circ}$

$$
\frac{2 \pi}{3}+2 \pi=\frac{8 \pi}{3}
$$

$$
\begin{aligned}
& 45^{\circ}+360^{\circ}=405 \\
& \frac{\pi}{4}+2 \pi=\frac{9 \pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& 210^{\circ}+360^{\circ}=570^{\circ} \\
& \frac{7 \pi}{6}+2 \pi=\frac{19 \pi}{6}
\end{aligned}
$$

$$
30^{\circ}+360^{\circ}=390^{\circ}
$$

$$
\begin{array}{llll}
\text { regative: } \begin{array}{lll}
120^{\circ}-360^{\circ}=-240^{\circ} & 45^{\circ}-360^{\circ}=-315^{\circ} & 210^{\circ}-360=-150^{\circ} \\
\frac{2 \pi}{3}-2 \pi=-\frac{4 \pi}{3} & \frac{\pi}{4}-2 \pi=-\frac{7 \pi}{4} & \frac{7 \pi}{6}-2 \pi=-\frac{5 \pi}{6} \\
\frac{\pi}{6}-2 \pi=-\frac{11 \pi}{6}
\end{array}
\end{array}
$$

Reference Angles - measures how fax to the x-axis

- Should always be positive!

Example 3: Determine the reference angles for the following:
A.) 120°

D.) $\frac{5 \pi}{6}$

B.) -40°

E.) $-\frac{3 \pi}{4}$

$$
\begin{array}{r}
-\frac{3 \pi}{4}+x=-\pi \\
x=-\frac{\pi}{4} \\
x=\frac{\pi}{4}
\end{array}
$$

