Name:
Unit 6: Polynomials
Date: \qquad Period: \qquad

Polynomials: Operations and Classifying

Part 1: Classify each as \mathbf{M} (monomial), \mathbf{B} (binomial), \mathbf{T} (trinomial), \mathbf{P} (polynomial), or \mathbf{C} (constant).
1). \qquad $5 x^{3}+2 x-1$
2). \qquad 89
3). \qquad $2 x^{12}$
4). \qquad $5 x-10$
5). \qquad $8 x^{4}-7 x^{3}+2 x-19$
6). \qquad $43 x^{8}-14 x^{5}$

Part 2: Standard Form of Polynomials

7.) Circle the problems that are in standard form. If it is not in standard form, re-write in standard form.
a. $x^{3}-11 x^{2}$
b. $2+3 x+4 x^{2}+3 x^{3}$
c. $3 x+17 x^{4}+2 x^{2}$
d. $1+3 x+2 x^{2}$
8.) Given: $2 x^{3}-5 x^{2}-2 x+12$

How many terms are there? \qquad
What is the coefficient of the $3^{\text {rd }}$ term? \qquad
What is the constant? \qquad
Given: $6 x^{7}+3 x^{5}-1$
How many terms are there? \qquad
What is the coefficient of the $3^{\text {rd }}$ term? \qquad
What is the leading term? \qquad
What is the leading coefficient? \qquad
What is the degree? \qquad
Part 3: Identify whether the following are examples of polynomials. If not, explain.
10.) $5 x^{-2}+1$
11.) $2 x^{3}-5 x^{2}-2 x+12$
12.) $5 x^{4}+9 t^{8}+4 z-8$
13.) $3 x^{\frac{1}{2}}+2$

Part 4: Perform the indicated operations
14.) $4\left(x^{2}-3\right)+x(x+1)=$
15.) $(4 x+3)(x-7)=$
16.) $(3 x-1)\left(2 x^{2}-5 x+1\right)=$
17.) $\left(2 x-13 x^{2}+3\right)-\left(2 x^{2}+8 x\right)=$
18.) $(x-9)(x+9)=$
19.) The width of a rectangular painting is three inches more than twice the height. A frame that is 2.5 inches wide goes around the painting.
a. Write an expression for the area of the painting.
b. Write an expression for the combined area of the painting and frame.
c. What is the area of the frame?

