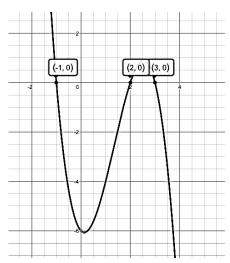
Integrated Math 3 Unit 6: Polynomials 6.10

Date: _____ Period: _____

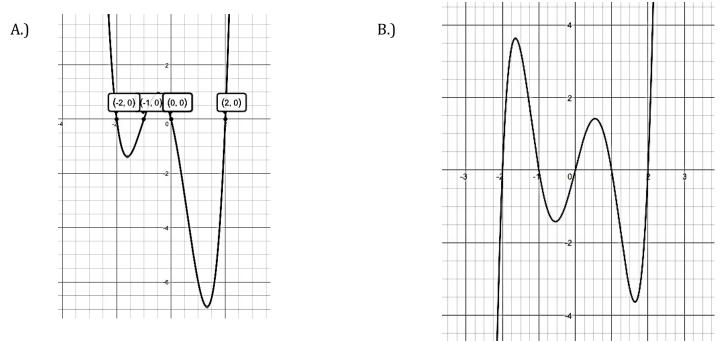

Name:

Objective: Graph simple polynomial equations by finding zeros and end behavior.

Warm Up:

On the right is a graph of a polynomial. Identify the following:

- Degree of the polynomial: _____
- Sign of the leading coefficient: _____
- X-intercepts/Zeros: ______


Extending Ideas:

> Above you listed all x-intercepts of the polynomial. How could we write those x-intercepts as <u>factors</u>?

➢ How could we translate those factors into <u>factored form</u>?

Once the equation is in factored form, we are able to write it in <u>standard form</u> by multiplying the factors together!

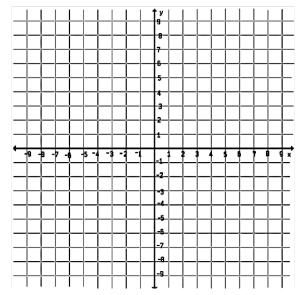
Example 1: Write a possible equation of a polynomial in factored form from looking at a graph.

Example 2: Write a possible equation of a polynomial in factored form from written information.

A.) Write an equation of a quadratic polynomial with a positive leading coefficient that has x-intercepts at x = 4, 6. Sketch an image of this polynomial.

B.) Write an equation of a cubic polynomial with a negative leading coefficient that has x-intercepts at x = 0, 3, -1. Sketch an image of this polynomial.

Example 3: Given $h(x) = x(2x+5)(x-4)^2$


a. Factor h(x) completely

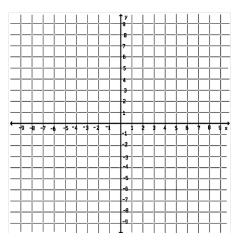
Identify the end behavior of h(x)

e.

- As $x \rightarrow \infty$, $h(x) \rightarrow \infty$
- As $x \rightarrow -\infty$, $h(x) \rightarrow$

f. Draw a rough sketch of h(x)

- b. Find the zeros of h(x)
- c. Highest Degree _____ (even or odd)
- d. Leading Coefficient ____ (+ or –)


Example 4: Given $m(x) = (-x + 3)(x^2 - 2x + 1)$

a. Factor m(x) completely

e. Identify the end behavior of m(x)

As
$$x \rightarrow \infty$$
, $m(x) \rightarrow$
As $x \rightarrow -\infty$, $m(x) \rightarrow$

f. Draw a rough sketch of m(x)

- b. Find the zeros of m(x)
- c. Highest Degree _____ (even or odd)
- d. Leading Coefficient ____ (+ or –)