Integrated Math 3
Unit 6: Polynomials
6.10

Name: \qquad
Date: \qquad Period: \qquad

Objective: Graph simple polynomial equations by finding zeros and end behavior.

Warm Up:

On the right is a graph of a polynomial. Identify the following:
$>$ Degree of the polynomial: \qquad
$>$ Sign of the leading coefficient: \qquad
> X-intercepts/Zeros: \qquad

Extending Ideas:

$>$ Above you listed all x-intercepts of the polynomial. How could we write those x-intercepts as factors?
$>$ How could we translate those factors into factored form?
$>$ Once the equation is in factored form, we are able to write it in standard form by multiplying the factors together!

Example 1: Write a possible equation of a polynomial in factored form from looking at a graph.
A.)

B.)

Example 2: Write a possible equation of a polynomial in factored form from written information.
A.) Write an equation of a quadratic polynomial with a positive leading coefficient that has x-intercepts at $x=4,6$. Sketch an image of this polynomial.
B.) Write an equation of a cubic polynomial with a negative leading coefficient that has x-intercepts at $x=0,3,-1$. Sketch an image of this polynomial.

Example 3: Given $h(x)=x(2 x+5)(x-4)^{2}$
a. Factor $\mathrm{h}(\mathrm{x})$ completely
b. Find the zeros of $h(x)$
c. Highest Degree \qquad (even or odd)
d. Leading Coefficient \qquad (+ or -)
e. Identify the end behavior of $\mathrm{h}(\mathrm{x})$

$$
\begin{array}{ll}
\text { As } \mathrm{x} \rightarrow \infty, \mathrm{~h}(\mathrm{x}) & \rightarrow \\
\text { As } \mathrm{x} \rightarrow-\infty, \mathrm{h}(\mathrm{x}) & \rightarrow
\end{array}
$$

f. Draw a rough sketch of $h(x)$

e. Identify the end behavior of $\mathrm{m}(\mathrm{x})$

$$
\begin{aligned}
& \text { As } \mathrm{x} \rightarrow \infty, \mathrm{~m}(\mathrm{x}) \rightarrow \\
& \text { As } \mathrm{x} \rightarrow-\infty, \mathrm{m}(\mathrm{x})
\end{aligned}
$$

f. Draw a rough sketch of $m(x)$

b. Find the zeros of $m(x)$
c. Highest Degree \qquad (even or odd)
d. Leading Coefficient \qquad (+ or -)

