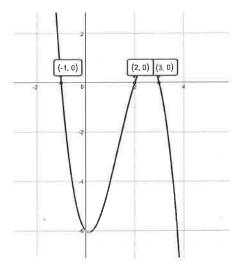
Date: _____


Period:____

Objective: Graph simple polynomial equations by finding zeros and end behavior.

Warm Up:

On the right is a graph of a polynomial. Identify the following:

- > Degree of the polynomial: _______
- Sign of the leading coefficient:
- \triangleright X-intercepts/Zeros: (-1,0), (2,0), (3,0)

Extending Ideas:

> Above you listed all x-intercepts of the polynomial. How could we write those x-intercepts as <u>factors</u>?

$$(x+1)(x-2)(x-3)$$

➤ How could we translate those factors into <u>factored form</u>?

$$f(x) = -(x+1)(x-2)(x-3)$$

> Once the equation is in factored form, we are able to write it in <u>standard form</u> by multiplying the factors together!

$$-(X+I) = -X-I$$

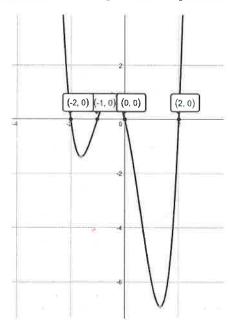
$$-x -2$$

$$-x^2 2x$$

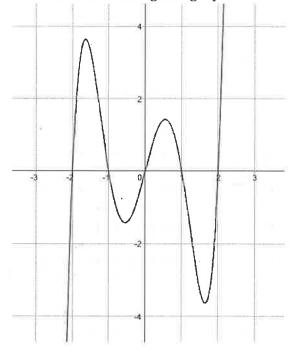
$$-x 2$$

$$(-x^2+x+2)(x-3)$$

$$-x^{2}$$
 \times 2
 \times $-x^{3}$ \times 2
 -3 \times \times 2
 \times \times \times 2
 \times \times \times 2
 \times \times 2
 \times \times 2
 \times 2
 \times 2
 \times 3
 \times 2
 \times 2
 \times 2
 \times 3
 \times 2
 \times 3
 \times 2
 \times 2
 \times 3
 \times 2
 \times 3
 \times 2
 \times 3
 \times 2
 \times 3
 \times


$$-(x+1)(x-2)$$

$$= -x^2 + x + 2$$


$$f(x) = -x^3 + 4x^2 - x - 6$$

Example 1: Write a possible equation of a polynomial in factored form from looking at a graph.

A.)

B.)

f(x)=x(x+2)(x+1)(x-2)

$$f(x) = x(x+2)(x+1)(x-1)(x-2)$$

$$f(x) = x(x^2+1)(x^2-1)$$

Example 2: Write a possible equation of a polynomial in factored form from written information.

A.) Write an equation of a quadratic polynomial with a positive leading coefficient that has x-intercepts at x = 4, 6. Sketch an image of this polynomial. (4,0), (6,0)

$$f(x) = (x-4)(x-6)$$

B.) Write an equation of a cubic polynomial with a negative leading coefficient that has x-intercepts at x = 0, 3, -1. Sketch an image of this polynomial.

$$f(x) = -x(x-3)(x+1)$$

a. Factor h(x) completely

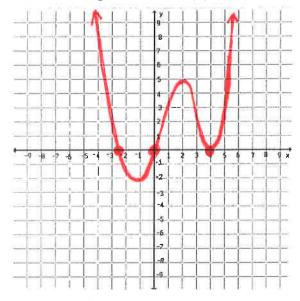
$$h(x) = x(2x+5)(x-4)^2$$

* trick question-this was already factored. It's not a difference of squares.

(H would be if 14 were (x2-4))

b. Find the zeros of h(x)

- c. Highest Degree _____
- (even or odd)


e.

d. Leading Coefficient (+ or -)

Identify the end behavior of h(x)

As
$$x \to \infty$$
, $h(x) \to \infty$
As $x \to -\infty$, $h(x) \to \infty$

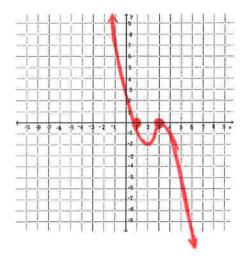
f. Draw a rough sketch of h(x)

Example 4: Given $m(x) = (-x + 3)(x^2 - 2x + 1)$

a. Factor m(x) completely

m(x) = -(x-3)(x-1)(x-1)

b. Find the zeros of m(x)


 $(3,0), (1,0)^*$

- c. Highest Degree ______ (even or odd)
- d. Leading Coefficient ___ (+ or -)

Identify the end behavior of m(x)

As $x \rightarrow \infty$, $m(x) \rightarrow$ As $x \rightarrow -\infty$, m(x)

f. Draw a rough sketch of m(x)

