Integrated Math 3	Name:	
Unit 6: Polynomials		
6.11 Worksheet	Date:	Period:

Continued Practice with Graphing Polynomials

Without graphing, identify the end behavior of the polynomial function.

1] $y = 2x^5 + 7x^2 + 4x$	2] $y = -5x$	3] $y = 12x^4 - 2x + 5$
Degree: Sign of LC:	Degree: Sign of LC:	Degree: Sign of LC:
as $x \to -\infty$, $y \to $	as $x \to -\infty$, $y \to ___$	as $x \to -\infty$, $y \to $
as $x \to \infty$, $y \to _$	as $x \to \infty, y \to _$	as $x \to \infty$, $y \to _$
4] $y = 6 - 2x - 4x^2 + 5x^3$	5] $y = 1 + 2x^6 - 4x^2 - 2x^6$	6] $y = 4x + 2 - 5x^6$
Standard Form:	Standard Form:	Standard Form:
Degree: Sign of LC:	Degree: Sign of LC:	Degree: Sign of LC:
as $x \rightarrow -\infty$, $y \rightarrow ___$	as $x \to -\infty$, $y \to $	as $x \to -\infty$, $y \to $
as $x \to \infty$, $y \to _$	as $x \to \infty, y \to _$	as $x \to \infty, y \to _$

Match the polynomial function with its graph without using a graphing calculator. Think about how the degree of the polynomial affects the shape of the graph.

For each of the following, use the end behavior and x-intercepts to match the equation to its graph.

31. Write an equation of a quintic polynomial with a negative leading coefficient that has x-intercepts at x = 0, -1, 5 and multiplicity at x = -2. Sketch an image of this polynomial.

32. Write an equation of a cubic polynomial with a positive leading coefficient that has x-intercepts at x = -8, -3, 5. Sketch an image of this polynomial.

33. Given $h(x) = x^2 - 11x + 10$

a. Factor h(x) completely

e. Identify the end behavior of h(x)

As
$$x \to \infty$$
, $h(x) \to$
As $x \to -\infty$, $h(x) \to$

f. Draw a rough sketch of h(x)

- b. Find the zeros of h(x)
- c. Highest Degree _____ (even or odd)
- d. Leading Coefficient ____ (+ or –)