\qquad
Unit 6: Polynomials
6.12

Date: \qquad Period: \qquad
Objective: To factor a polynomial function using the factor theorem and find the zero of a function.

Warm Up: Given $y=x^{2}-4 x+3$
a. Write the quadratic equation in factored form.
b. Why is the equation in part (a) also called intercept form?

Vocabulary:

Factor Theorem: A polynomial $f(x)$ has a factor $(x-k)$ if and only if $f(k)=0$. This is the same as saying k is a zero of the function.

Remainder Theorem: If a polynomial $f(x)$ is divided by $(x-k)$, then the remainder is $r=f(k)$.

Example 1: Is $(x+1)$ a factor of $x^{3}-x^{2}+2$?

Example 2: Use the remainder theorem to find the remainder for each division. State whether the binomial is a factor of the polynomial.
a. $\left(x^{2}-x+4\right) \div(x-2)$
b. $\left(x^{3}+x^{2}-17 x+15\right) \div(x+5)$
d. $\left(x^{3}-9 x^{2}+27 x-28\right) \div(x-3)$

Steps to factoring using the factoring theorem

1. Write the function in standard form
2. Set up the area model
3. Find the factor that was used to multiply $(x-k)$ to get the polynomial by working backwards.
4. Identify your answer:
a) If there is no remainder, k is the x-intercept (and a factor of the polynomial)
b) If there is a remainder, plug k in to the polynomial to confirm that k is not a factor.

Example 3: Factor using the area model.
a. $f(x)=2 x^{3}+11 x^{2}+18 x+9$ when $k=-3$
b. $f(x)=3 x^{3}+13 x^{2}+2 x-8$ when $k=-4$

Example 4: Factor and then find all the zeros of the function.
a. $f(x)=x^{3}-2 x^{2}-9 x+18$ when $k=2$
b. $f(x)=x^{3}+6 x^{2}+3 x-10$ when $k=-5$

