Integrated Math 3 Unit 6: Polynomials 6.6

Name:

Period:____

X=-2.75,0.18

x = -4.22, -0.6

Objective: to solve simultaneous functions using the graphing calculator.

Warm-up:

- 1. Factor $x^2 6x + 5$ (X-1)(X-5) -1 - X 5
- 3. Solve $(x^2 1)(x^2 2x + 1) = 0$ (x-1)(x+1)(x-1)(x-1) = 0 (x-1)(x+1)(x-1) = 0 (x-1)(x-1) = 0 (x-1)(x-1) = 0(x-1)(x-1) = 0

2. Factor $(x^3 - 2x^2) - 3x + 6$ $\times^2 (\times -2) - 3 (\times -2)$ $\Rightarrow (\times^2 - 3) (\times -2)$

Date: ____

4. What does a solution to an equation tell you?

H tells you where the x-intercepts are located!

Steps to solving using a graphing calculator:

- 1. Type the left side of the equation into the graphing calculator (Y_1)
- Type the right side of the equation into the graphing calculator (Y₂)
 Note: Be sure to put parenthesis around both the numerator & denominator for fractions.
- 3. Graph the equations

(-1,0),(1,0)

4. $2^{nd} \rightarrow Calc \rightarrow Intersect...$ Then follow the prompts to give the calculator a restricted domain.

b. $\frac{3x+5}{x-2} = \frac{x-6}{5x+1}$

 $Y_{1} = (3x+5)/(x-2)$

d. $\log(x + 7) = |2x + 5| - 3$

 $Y_{1} = \log(X+T)$

 $Y_2 = 12X + 5| - 3$

 $1_2 = (X - 6) / (5X + 1)$

Example 1: Solve each of the following using your graphing calculator (round to the nearest thousandth).

a. $\sqrt{x+5} = 5 - \sqrt{x}$ $Y_1 = \sqrt{(x+5)}$ $Y_2 = 5 - \sqrt{(x)}$ x = 4c. $\frac{1}{2}x^2 - 5 = -x + 3$ $Y_1 = (1/2) \times 2 - 5$ $Y_2 = -x + 3$ x = -5.12, 3.12

e.
$$\sqrt{3x+2} = \sqrt{6x+4}^{2}$$
 *no calculator
 $3x+2 = 6x+4^{2}$ $7x+5$
 $-3x -3x$
 $2=3x+4^{2}$ $-2=3x + 4^{2}$
 $y_{1} = 3^{x}(x+5)$
 $y_{2} = 3 \ln (x+6) + 2$
 $y_{1} = 3^{x}(x+5)$
 $y_{2} = 3 \ln (x+6) + 2$
 $y_{1} = 3^{x}(x+6) + 2$
 $y_{2} = 3 \ln (x+6) + 2$
 $x = -5.36$
 $y_{1} = -(1/4) + 2$
 $x = -2/3$
 $y_{1} = \sqrt{3x-2} + 4 - \sqrt{2x-3}$
 $y_{1} = \sqrt{(3x-2)}$
 $y_{2} = 2 \log (3-x)$
 $x = 2.52$
 $x = 2.52$

Reflect: What are the key steps to remember from today?

Practice: Solve each of the following using your graphing calculator (round to the nearest thousandth).

23

a.
$$x^{3} = x^{2} - 1$$

 $y_{1} = x^{3} 3$
 $y_{2} = x^{2} - 1$
 $y_{1} = x^{3} 3$
 $y_{2} = x^{2} - 1$
 $y_{1} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{1} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{1} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{1} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{1} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{3} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{3} = x^{2} - 1$
 $y_{2} = x^{2} - 1$
 $y_{3} =$