Integrated Math 3
Unit 6: Polynomials 6.8

Name: \qquad
Date: \qquad Period: \qquad
Objective: to identify key features of graphs.

Warm-up: Explain how the graph of $f(x)=x^{2}$ and the graph of $f(x)=(x+2)^{2}+3$ are different.

> The second graph moves to the left 2 units and up 3 units from the parent graph

Example 1: Use the graph provided to find each of the following
a. x-intercept(s)
b. y-intercept

c. relative maximum (s)

$$
(-6,5),(0,5)
$$

$(0,5)$

d. relative minimum (s)

$$
(-3,-2),(5,-4)
$$

e. maximum
none
g. increasing intervals)

$$
(5, \infty)
$$

i. end behavior

$$
\begin{aligned}
& x \rightarrow \infty, f(x) \rightarrow \infty \\
& x \rightarrow-\infty, f(x) \rightarrow-\infty
\end{aligned}
$$

f. minimum
none
h. decreasing interval (s)

j. average rate of change from -8 to 0

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-0}{0-8}=\frac{(-8,0)}{8}
$$

Example 2: Use the graph provided to find each of the following
a. x-intercept(s)
b. y-intercept
$\left(-\frac{3 \pi}{2}, 0\right),\left(-\frac{\pi}{2}, 0\right)$,
$\left(\frac{\pi}{2}, 0\right),\left(\frac{3 \pi}{2}, 0\right)$
c. relative maximum (s)
$(-2 \pi, 1),(0,1)$,
$(2 \pi, 1)$
d. relative minimum (s)

$$
(0,1)
$$

.0 .5
-1

$$
\begin{array}{llll}
-2 \pi & -3 \pi / 2 & -\pi & -\pi / 2 \\
360^{\circ} & 270^{\circ} & 1100^{\circ} & .90^{\circ}
\end{array}
$$

$$
(-\pi,-1),(\pi,-1)
$$

e. maximum

$$
(-2 \pi, 1,1,(0,1),
$$

$$
(2 \pi, 1)
$$

g. increasing intervals)

$$
(-\pi, 0),(\pi, 2 \pi)
$$

i. periodicity

$$
\text { Period }=2 \pi
$$

f. minimum

$$
\left(-\pi_{1}-1\right),\left(\pi_{1}-1\right)
$$

h. decreasing intervals)

$$
(-2 \pi,-\pi),
$$

$(0, \pi)$
j. symmetry

Even
k. average rate of change from $-\frac{3 \pi}{2}$ to $\frac{\pi}{2}$

$$
\begin{aligned}
& \left(-\frac{3 \pi}{2}, 0\right)^{2}\left(\frac{\pi}{2}, 0\right) \\
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-0}{\frac{\pi}{2}-\left(-\frac{3 \pi}{2}\right)}=\frac{0}{2 \pi}=0
\end{aligned}
$$

