Objective: to identify key features of graphs.

**Warm-up:** Explain how the graph of  $f(x) = x^2$  and the graph of  $f(x) = (x+2)^2 + 3$  are different.

The second graph moves to the left 2 units and up 3 units from the parent graph.

**Example 1**: Use the graph provided to find each of the following

a. x-intercept(s)

(-8,0), (-4,0), (-2,0), (3,0), (8,0)

c. relative maximum(s)

(-6,5), (0,5)

b. y-intercept

(0,5)



d. relative minimum(s)

$$(-3,-2), (5,-4)$$

e. maximum

none

g. increasing interval(s)

 $(-\infty, -\omega), (-3, 0),$  $(5, \infty)$ 

i. end behavior

 $X \rightarrow \infty, f(X) \rightarrow \infty$  $X \rightarrow -\infty, f(X) \rightarrow -\infty$  f. minimum

none.

h. decreasing interval(s)

(-6,-3), (0,5)

j. average rate of change from -8 to 0

 $\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 0}{0 - 8} = \frac{5}{8}$ 

## **Example 2**: Use the graph provided to find each of the following

a. x-intercept(s)

c. relative maximum(s)

$$(-2\pi,1)$$
,  $(0,1)$ ,  $(2\pi,1)$ 

d. relative minimum(s)

$$(-\pi,-1)$$
,  $(\pi,-1)$ 

e. maximum

$$(-2\pi,1),(0,1),$$

g. increasing interval(s)

i. periodicity

b. y-intercept

- 0.5 0 -0.5-1  $-2\pi - 3\pi/2$ -**π**  $-\pi/2$  $\pi/2$  $3\pi/2$ 
  - -360° -270° -90% -180\*
- $90^{\circ}$ 1809 270 \*06E

f. minimum

$$(-\pi,-1)$$
,  $(\pi,-1)$ 

h. decreasing interval(s)

j. symmetry

Even

k. average rate of change from  $-\frac{3\pi}{2}$  to  $\frac{\pi}{2}$ 

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 0}{\frac{\pi}{2} - (-\frac{3\pi}{2})} = \frac{0}{2\pi} = 0$$