Integrated Math 3 Unit 6: Polynomials 6.9

Name: _____

Date: _____ Period: _____

Objective: to use end behavior to create sketches of graphs.

<u>Warm Up:</u>

1. Write $f(x) = 6x^2 - 13x - 5$ in factored form. What does factored form help you solve for?

2. Write $f(x) = x^3 + 6x^2 - x - 30$ in factored form. What does factored form help you solve for?

3. Identify all of the x-intercepts for #1 & #2. Explain what the x-intercepts represent for a polynomial.

Enter the class code **6B4MZJ** at <u>www.student.desmos.com</u> to explore a trend of what the following polynomials look like. Your task is to find a pattern, or shortcut, in determining a general shape for the polynomials.

CHARACTERISTICS OF POLYNOMIALS Possible Number of X-intercepts		2 nd degree	3 rd degree	4 th degree	5 th degree	6 th degree
	Positive Leading Coefficient	$y = 2x^2 + x - 1$				
General Shape of Polynomial						
	End Behavior	$x \to \infty, f(x) \to$ $x \to -\infty, f(x) \to$				
	Negative Leading Coefficient	$y = -3x^2 - 2x + 4$				
	End Behavior	$x \to \infty, f(x) \to$ $x \to -\infty, f(x) \to$				
Maximum # of Turns						

Follow up:

> Make at least two generalizations from the data you collected above

1.

2.

Make a prediction about the general shape of the following two polynomials <u>without</u> looking at a device. After your prediction, confirm with a device that your prediction holds true.

1. $f(x) = -x^7 + x^3 - 4$ 2. $f(x) = x^8 + 2$

Let's Practice!

1. Briefly sketch what the following functions could look like. Be sure to identify the degree and leading coefficient first!

A.) $f(x) = x^3 + 4x^2 - 3$	B.) $f(x) = -x^6 + 2$
Degree:	Degree:
Sign of Leading Coefficient:	Sign of Leading Coefficient:
Sketch:	Sketch:

C.) $f(x) = x + x^4 - 3$

Degree:

Sign of Leading Coefficient:

Sketch:

D.)
$$f(x) = 3x + 5 - 2x^2$$

Degree:

Sign of Leading Coefficient:

Sketch:

Example 1: Identify the following about the polynomial graphed below.

First write the polynomial in factored form. Then describe the end behavior using limit notation!

Possible Equation:

Possible Equation:

Possible Equation: