Name: _____

Date: _____ Period:____

Objective: to use end behavior to create sketches of graphs.

Warm Up:

1. Write $f(x) = 6x^2 - 13x - 5$ in complete factored form. What does factored form help you solve for?

$$\begin{array}{c|c}
2x & -5 \\
3x & 6x^2 & -15x \\
1 & 2x & -5
\end{array}$$

$$(2x-5)(3x+1)$$

Factored form helps us solve for the zeros/roots/x-intercepts.

2. Write $f(x) = x^3 + 6x^2 - 5x - 30$ in complete factored form. What does factored form help you solve for?

$$(x^2-5)(x+6)$$

Factored form helps us to solve for the zeros/roots/x-intercepts.

3. Identify all of the x-intercepts for #1 & #2. Explain what the x-intercepts represent for a polynomial.

#2)
$$(x^{2}-5)(x+6)=0$$

$$(x^{2}-$$

X= ±15

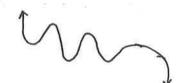
x-int: (-15,0), (15,0), (-6,0)

X-int: (\$2,0), (-3,0)

X-intercepts represent the location where the function touches the X-axis on the graph.

Use either a graphing calculator device or access the website <u>www.desmos.com</u> to explore a trend of what the following polynomials look like. Your task is to find a pattern, or shortcut, in determining a general shape for the polynomials.

CHARACTERISTICS OF POLYNOMIALS		2 nd degree	3 rd degree	4 th degree	5 th degree	6 th degree
Possible Number of X-intercepts		2	3	4	5	6
	Positive Leading Coefficient	$f(x) = 2x^{2} + 3$ $f(x) = 3x^{4} + 2x + 1$ $f(x) = 5x^{2} + 7x - 3$	f(x)=x ³ +4x f(x)=4x ⁸ -2x ⁸ +5x+1 f(x)=2x ⁸ +7x ⁸ -4x+3	f(x) = X4+3x	F(x) = x ⁵ - 2x	f(x) = x ^b -3x ²
General Shape of Polynomial						
	End Behavior	$x \rightarrow \infty$, $f(x) \rightarrow \infty$ $x \rightarrow -\infty$, $f(x) \rightarrow \infty$	$x \to \infty$, $f(x) \to \infty$ $x \to -\infty$, $f(x) \to -\infty$	X→∞, f(x)→∞ x→-∞,	$x \rightarrow \infty$, $f(x) \rightarrow \infty$ $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$	$x \rightarrow \infty$, $f(x) \rightarrow \infty$ $x \rightarrow -\infty$, $f(x) \rightarrow \infty$
	Negative Leading Coefficient	$f(x) = -2x^{2}$ $f(x) = -3x^{2} + 7x + 1$	F(x)=-3x2 F(x)=-2x2+6x2-7x+1 F(x)=-7x2+7x2+5x-2	f(x) → ∞	f(x) = -x ⁵	f(x) = -x6
	2 = 2				5	\mathcal{M}
	End Behavior	x→∞, f(x)→-∞ x→-∞, f(x)→-∞	x - 00, f(x) - 00 x - 00, f(x) - 00	x→∞, f(x)→-∞ +(x)→-∞	x→∞, f(x)→-∞ x→-∞, f(x)→∞	x→∞, f(x)→-∞ x→-∞, f(x)→-∞
Maximum # of Turns			2	3	4	5


Follow up:

- Make at least two generalizations from the data you collected above
 - 1. If it's an odd degree, the ends point in apposite directions.
 - · Positive=vight Side up
- · Negative = left side up
- 2. If it's an even degree, the ends point in the Same direction.

- · Negative = down
- Positive = up Negative = aownMake a prediction about the general shape of the following two polynomials <u>without</u> looking at a device. After your prediction, confirm with a device that your prediction holds true.

$$1. f(x) = -x^{0} + x^3 - 4$$

negative

- 2. $f(x) = x^{8} + 2$
- positive

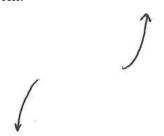
Let's Practice!

1. Briefly sketch what the following functions could look like. Be sure to identify the degree and leading coefficient first!

A.)
$$f(x) = x^3 + 4x^2 - 3$$

B.) $f(x) = -x^6 + 2$

Degree: 3


Sign of Leading Coefficient: +

Sketch:

Degree: (

Sign of Leading Coefficient: ____

Sketch:

C.)
$$f(x) = x + x^4 - 3$$

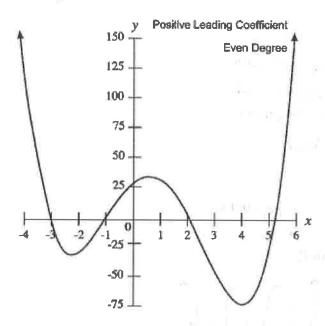
Degree: 4

Sign of Leading Coefficient: +

Sketch:

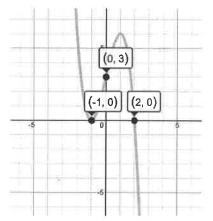

D.)
$$f(x) = 3x + 5 - 2x^2$$

Degree: 2


Sign of Leading Coefficient:

Sketch:

Example 1: Identify the following about the polynomial graphed below.



- $X \rightarrow \infty$, $f(x) \rightarrow \infty$ Describe the end behavior. $X \rightarrow -\infty$, $f(x) \rightarrow \infty$
- Leading Coefficient's Sign
- Degree of Function
- X-intercepts (-3,0) (-1,0) (2.1,0)(5.25,0)
- > Factors (x+3)(x+1)(x-2.1)(x-5.25)

Let's Practice!

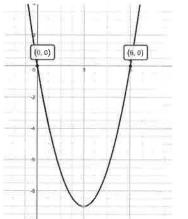
First write the polynomial in factored form. Then describe the end behavior using limit notation!

A.)

End Behavior: x - 00, f(x) - 00 x -- - 00, f(x) -> 00

Leading Coefficient Sign:

Degree of Function: 3


X-intercepts: (-1,0), (2,0)

Factors: (x+1)(x-2)

Possible Equation:

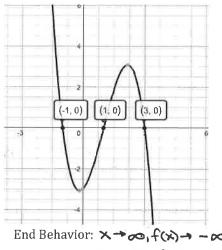
 $f(x) = -(x+1)^2(x-2)$

B.)

End Behavior: x - 00, f(x) - 00 x -- 00, f(x) -00

Leading Coefficient Sign:

Degree of Function: 7


X-intercepts: (0,0), (6,0)

Factors: ×(×-6)

Possible Equation:

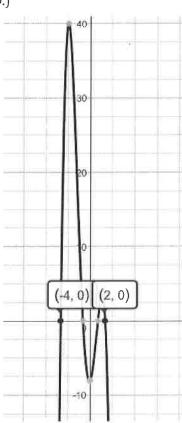
f(x) = x(x-6)

C.)

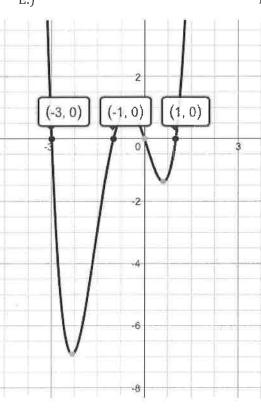
End Behavior: $\times \rightarrow \infty$, $f(x) \rightarrow -\infty$ $x \rightarrow -\infty$, $f(x) \rightarrow \infty$

Leading Coefficient Sign:

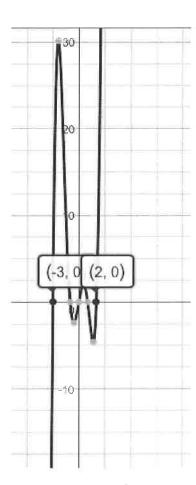
Degree of Function: 3


X-intercepts: (-1,0), (1,0), (3,0)

Factors: (x+1)(x-1)(x-3)


Possible Equation:

f(x) = -(x+)(x-)(x-3)


D.)

E.)

F.)

End Behavior:
$$\times \rightarrow \infty$$
, $f(x) \rightarrow -\infty$
 $\times \rightarrow -\infty$, $f(x) \rightarrow -\infty$

End Behavior:
$$x \rightarrow \infty$$
, $f(x) \rightarrow x \rightarrow -\infty$, $f(x) \rightarrow \infty$

End Behavior: $x \rightarrow \infty, f(x) \rightarrow x \rightarrow -\infty, f(x) \rightarrow x \rightarrow -\infty, f(x) \rightarrow x \rightarrow -\infty$

Leading Coefficient Sign: ___

Leading Coefficient Sign: +

Degree of Function:

Degree of Function: 5

X-intercepts: (-4,0), (2,0), (1,0), (-1,0)

X-intercepts:
$$(-3,0)(-1,0)$$
, $(0,0)$, $(1,0)$

X-intercepts: (-3,0), (2,0), (0,0), (-1,0), (1,0)

Factors:

Factors
$$\chi(x+3)(x+1)(x-1)$$

 $(x+4)(x-2)(x+1)$

actors: $\times (x+3)(x-2)(x+i)(x-i)$

Possible Equation:

Possible Equation:

$$f(x) = -(x+4)(x-2)(x-1)(x+1)$$

$$f(x) = x(x+3)(x-2)(x+1)(x-1)$$

Reflection:

- a) Why is finding the zeros for a polynomial important?
- b) What do they tell us about that polynomial?
- c) Name two ways to find the zeros.