Integrated Math 3
Unit 8: Exponential \& Logarithmic Functions

Name: \qquad

Date: \qquad Period: \qquad
Objective: To solve equations with uncommon bases and to convert between different forms

Warm Up

Simplify: $27^{x+1} *\left(\frac{1}{3}\right)^{x-2} * 9^{x} \quad$ Solve: $4^{x+1}=16^{2 x-4}$

Simplifying and solving equations provide nice neat solutions in the questions above because the expressions can be written with a common base. If two random numbers are chosen, the chances are relatively small that they share a common base, though.

Let' Investigate!

Estimate the value of the variable to the nearest hundredth.
A.) $2^{x}=5$
B.) $3^{a}=25$
C.) $5^{y}=15$
D.) $4^{b}=3$
E.) $10^{y}=500$
F.) $2 \cdot 3^{x}-4=5$

The logarithm is the inverse operation to exponentiation. That means the logarithm of a number is the exponent to which another fixed value, the base, must be raised to produce that number.

$$
b^{x}=a \left\lvert\, \begin{aligned}
& \text { is equivalent to: }
\end{aligned} \log _{b} a=x\right.
$$

"a base to an exponent gives you an answer"
"log with a base of an answer gives you an exponent" This will provide you with a more efficient way of solving for the variables!!!

Example 1:

Rewrite each equation below in logarithmic notation.
A.) $2^{x}=5$
B.) $3^{a}=25$
C.) $5^{y}=15$
D.) $4^{b}=3$
E.) $10^{y}=500$
F.) $2 \cdot 3^{x}-4=5$

In order to solve for the variables, we will use something called the "change of base" formula:
Change of Base Formula:
If given: $b^{x}=a$
(How to solve for an exponent
:Then: $\log _{b} a=x$
when you do not common bases)

Which implies: $x=\frac{\log a}{\log b}$

Example 2:

Find the exact value for the variable to the nearest hundredth.
A.) $2^{x}=5$
B.) $3^{a}=25$
C.) $5^{y}=15$
D.) $4^{b}=3$
E.) $10^{y}=500$
F.) $2 \cdot 3^{x}-4=5$

Let \&Practice!

Example 3:

Complete the table by switching back \& forth between exponential form and logarithmic form.

Exponential Form	Logarithmic Form
$4^{2}=16$	
	$\log _{1} 1=99$
	$\log _{2} 256=8$
$3^{0}=1$	
	$\log 100=2$
$a^{b}=c$	

Example 4:

Rewrite the logarithmic form to exponential form \& then evaluate/solve each one.
A.) $\log _{3} 9=x$
B.) $\log _{2} \frac{1}{16}=x$
C.) $\log _{4} 1=x$
D.) $\log _{2} x=-3$
E.) $\log _{x} 16=2$
F.) $\log _{x} \frac{1}{9}=-2$

