Integrated Math 3 Unit 8: Exponential & Logarithmic Functions 8.4

Date: _____ Period: _____

Name:

Objective: To evaluate and rewrite functions using the natural logarithm.

A.) $\log 100 = x$ B.) $\log 10 = x$	

When working with logarithms, there were many instances when we did not see a subscript beside the abbreviation "log" to indicate the base. We assume when a base is not present, the logarithm has base of 10 by default.

Key Term:

Natural logarithm (natural log) is a specific type of logarithm that has a different base, *e*.

The natural log is abbreviated as *ln* and it works identically to *logs*.

Example 1: Rewrite the following in logarithmic form

A.) $e^0 = 1$ B.) $e^1 = e$ C.) $e^{10} = 27.18$

Example 2: Rewrite the following in exponential form

A.)
$$\ln 6 = x$$
 B.) $\ln e = 1$ C.) $\ln 148.41 = 5$

Example 3: Evaluate. If necessary, round to the nearest tenth.

A.)
$$e^4 e^7$$
 B.) $e^{-3} e^7$ C.) $e^9 + e^0$

D.) Solve $4 \ln x = 23$ E.) Solve $5 \ln 3x = 14$

F.) Solve $6(e^{x+1}) = 1,000,000$

G.) Solve $-3(e^{2x-3}) = -469.016$