Integrated Math 3
Unit 8: Exponential \& Logarithmic Functions 8.4

Objective: To evaluate and rewrite functions using the natural logarithm.

Warm Up: Evaluate.
A.) $\log 100=x$
B.) $\log 10=x$

When working with logarithms, there were many instances when we did not see a subscript beside the abbreviation "log" to indicate the base. We assume when a base is not present, the logarithm has base of 10 by default.

Key Term:

Natural logarithm (natural log) is a specific type of logarithm that has a different base, e.
The natural log is abbreviated as \ln and it works identically to logs.

\boldsymbol{e}	$\log _{e} a=x$	$\ln a=x$

Example 1: Rewrite the following in logarithmic form
A.) $e^{0}=1$
B.) $e^{1}=e$
C.) $e^{10}=27.18$

Example 2: Rewrite the following in exponential form
A.) $\ln 6=x$
B.) $\ln e=1$
C.) $\ln 148.41=5$

Example 3: Evaluate. If necessary, round to the nearest tenth.
A.) $e^{4} e^{7}$
B.) $e^{-3} e^{7}$
C.) $e^{9}+e^{0}$
D.) Solve $4 \ln x=23$
E.) Solve $5 \ln 3 x=14$
F.) Solve $6\left(e^{x+1}\right)=1,000,000$
G.) Solve $-3\left(e^{2 x-3}\right)=-469.016$

