Integrated Math 3
Unit 8: Exponential \& Logarithmic Functions 8.4

Name: \qquad
Date: \qquad Period: \qquad
Objective: To evaluate and rewrite functions using the natural logarithm.

Warm Up: Evaluate.
A.) $\log _{10} 100=x$

$x=2$
B.) $\log _{10} 10=x$

$$
\begin{gathered}
10^{x}=10 \\
x=1
\end{gathered}
$$

When working with logarithms, there were many instances when we did not see a subscript beside the abbreviation "log" to indicate the base. We assume when a base is not present, the logarithm has base of 10 by default.

Key Term:

Natural logarithm (natural \log) is a specific type of logarithm that has a different base, e.
The natural log is abbreviated: \ln and it works identically to logs.

Example 1: Rewrite the following in logarithmic form
A.) $e^{0}=1$
B.) $e^{1}=e$
C.) $e^{10}=27.18$
$\log _{e} 1=0$
$\log _{e} e=1$
$\log _{e} 27.18=10$
$\Rightarrow \ln 1=0$
$\Rightarrow \ln e=1$
$\Rightarrow \ln 27.18=10$

Example 2: Rewrite the following in exponential form
A.) $\ln _{e} 6=x$
B.) $\ln e=1$
C.) $\ln 148.41=5$
$e^{x}=6$
$e^{\prime}=e$
$e^{5}=148.41$

Example 3: Evaluate. If necessary, round to the nearest tenth.
A.) $e^{4} e^{7}=e^{4+7}$
$=e^{\prime \prime}$
≈ 59874.1
B.) $e^{-3} e^{7}=e^{-3+7}$
$=e^{4}$
≈ 54.6
C.) $e^{9}+e^{0}$
$=e^{9}+1$
$\approx 8103.1+1$
≈ 8104.1
D.) Solve $\frac{4 \ln }{4} x=\frac{23}{4}$

$$
\begin{aligned}
& \ln x=\frac{23}{4} \\
& e^{23 / 4}=x
\end{aligned}
$$

$$
x \simeq 314.2
$$

E.) Solve $\frac{5}{5} \ln 3 x=\frac{14}{5}$

$$
\begin{aligned}
\ln 3 x & =\frac{14}{5} \\
e^{14 / 5} & =3 x \\
\frac{16 \cdot 4}{3} & =\frac{3 x}{3}
\end{aligned}
$$

$$
x \approx 3.5
$$

F.) Solve $\frac{6}{6}\left(e^{x+1}\right)=1, \frac{000,000}{6}$

$$
e^{x+1}=166666.7
$$

$\ln (166666.7)=x+1$
$\ln (166666.7)-1=x$
$x \approx 11.0$
G.) Solve $\frac{-3}{-3}\left(e^{2 x-3}\right)=\frac{-469.016}{-3}$

$$
e^{2 x-3}=156.3
$$

$$
\ln 156.3=2 x-3
$$

$$
\ln 156.3+3=2 x
$$

$$
\ln 156.3+3
$$

$$
2=x
$$

$$
x \approx 4.0
$$

