

# Final Exam Review Packet 

Semester 1 - 2019

Name

## Semester 1 Formulas

${ }^{* *}$ ALL formulas below will be given within appropriate questions on the final exam**

| Formulas: | $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ |
| :---: | :---: |
| Area of a Triangle: $A=\frac{1}{2} \cdot b \cdot h$ | Area of a Rectangle/Square: $A=b \cdot h$ |
| Area of a Parallelogram: $A=b \cdot h$ | Area of a Rhombus: $A=b \cdot h \quad$ or $A=\frac{1}{2} \cdot d_{1} \cdot d_{2}$ |
| Area of a Kite: $\quad A=\frac{1}{2} \cdot d_{1} \cdot d_{2}$ | Area of a Trapezoid: $\quad A=\frac{1}{2} \cdot h\left(b_{1}+b_{2}\right)$ |
| $(x-h)^{2}+(y-k)^{2}=r^{2}$ | $(x-h)^{2}=4 p(y-k) \quad(y-k)^{2}=4 p(x-h)$ |


| Formulas: | Prism | $V=B h$ | Cone | $V=\frac{1}{3} \pi r^{2} h$ | $S A=\pi r^{2}+\pi r l$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cylinder | $V=\pi r^{2} h$ | Sphere | $V=\frac{4}{3} \pi r^{3}$ | $S A=4 \pi r^{2}$ |
|  | Pyramid | $V=\frac{1}{3} B h$ |  |  |  |

Use the space below to list any other formulas you might need (that will not be given to you).

## Unit 1: Analytical Geometry

1. For a circle with center $(5,-2)$ and a point at $(-3,8) \ldots$
a. Determine the radius.
b. Write the equation of the circle.
2. Given the line $y=\frac{4}{3} x-5$, write the equation of a line perpendicular to the given line that goes through the point $(6,-1)$ in point-slope form.
3. Given the line $y=\frac{4}{3} x-5$, write the equation of a line parallel to the given line that goes through the point $(6,-1)$ in slope-intercept form.
4. Given the equation of a circle is $x^{2}+y^{2}-8 x+6 y+16=0$, find each of the following:
a. The equation in standard form
b. The center
c. The radius
c. The diameter
d. The area
d. The circumference of the circle
e. Justify if $(-3,5)$ is on the circle
5. Given the equation of the parabola: $(x+2)^{2}=8(y+2)$, provide the missing information, then graph.
a. Vertex $\qquad$
b. P-value $\qquad$
c. Focus $\qquad$
d. Directrix $\qquad$

6. Given the equation of the parabola: $(y+1)^{2}=-12(x-3)$, provide the missing information, then graph.
a. Vertex $\qquad$
b. P-value $\qquad$
c. Focus $\qquad$
d. Directrix $\qquad$
7. Using the sector below with a radius of 5 cm .
a. Find the length of the minor arc $\widehat{A C}$.

b. Find the area of the sector created by minor arc $\widehat{A C}$.
8. Using the sector below with a radius of 9 cm .
a. Find the length of the minor $\operatorname{arc} \widehat{A B}$.
b. Find the area of the sector created by minor arc $\widehat{A B}$.

9. Jose owns a plot of land in the shape of a quadrilateral. If the outside of this plot of land has endpoints of $A:(-3,5), B:(4,5), C:(2,-2)$, and $D:(-5,-2)$.
a. Classify quadrilateral ABCD. Justify your reasoning using slope and distance.
b. Find the perimeter.
c. Determine the area.


## Unil 2: Geometric Proofs and Modeling

10. What are the cross sections formed by each of the following shapes?
a. Cylinder
b. Cone
c. Sphere:

Vertical:
Vertical:
Vertical:

Horizontal:
Horizontal:
Horizontal:
11. Determine which 3-dimensional shape is formed by each of the following.
a. A rectangle rotated around a segment
b. A right triangle rotated around a segment
c. A circle rotated along its diameter
12. I purchased an area rug that measures $24^{\prime \prime}$ by $48^{\prime \prime}$. The design within the rug contained 4 circles with radius of 6 " and 4 equilateral triangles with lengths of 12 ". Find each of the following: (not drawn to scale)
a. Area of one triangle
b. Area of one circle
c. Total area of rug
d. Total area of all triangles and circles

e. Area of the rug not containing triangles or circles.
13. Use the triangular prism to calculate:
a. Total Surface Area

b. Volume
14. Use the diagram to calculate:
a. Total Surface Area
b. Volume

15. Use the square pyramid to calculate:
a. Total Surface Area

b. Volume
16. Use the cone to calculate:
a. Total Surface Area
b. Volume

17. A sphere with a radius of 10 .
a. Total Surface Area
b. Volume
18. The average television has a mass of $12,473.79$ grams. Find the density if the volume of an average television is 1,507.92 cubic inches.
19. The population density of Wrap, IL is 4,564 people per square mile. How many people live in Wrap if the town covers $9.71 \mathrm{mi}^{2}$
20. The population density of Hot Dog, IL is 5,155 people per square mile. If there are 16,887 people living outside the bun, how many square miles is Hot Dog, IL?

## Unit 3: Representing Functions

21. Use the graph to identify the following:

Relative minimum(s):

Relative maximum(s):

Absolute maximum(s):


Absolute minimum(s):

Increasing interval(s):

Decreasing interval(s):

Domain:
Range:

X-Intercept(s):
Y- Intercept(s):
22. Use the graphs below to identify the type of symmetry. Draw the line or point where the graph is symmetric.
a.

b.

23. Given the functions $f(x)=x^{2}$ and $g(x)=-3(x+1)^{2}+4$, determine how each number transforms the new graph (be specific).
a. -3
b. 1
c. 4
24. Use the graph below to identify the indicated key features.

Type of symmetry:
Relative maximum(s):


Relative minimum(s):
Absolute maximum(s):
Absolute minimum(s):
Intervals of increasing:
Intervals of decreasing:
End behavior:

$$
\begin{aligned}
& \text { As } \mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow \\
& \text { As } \mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow
\end{aligned}
$$

Domain:

X-Intercept(s):
Y- Intercept(s):
25. Using the following graph, determine if it demonstrates periodicity. If so, what is the period?

26. Use the graph to answer the questions below.
a. Describe the transformations from the parent graph to the provided one.
b. Write the equation for this graph.

27. Graph the following piecewise function. Then, answer the questions that follow.

$$
f(x)=\left\{\begin{array}{cl}
-2|x|+5, & \text { if } x \leq 1 \\
x-2, & \text { if } x>1
\end{array}\right.
$$

a. Find $f(-4)$
b. Find $f(-2)$

d. Find $f(2)$

$$
0
$$

c. Find $f(0)$

$$
\downarrow
$$

e. Find $f(4)$
28. Graph the following piecewise function. Then, answer the questions that follow.

$$
f(x)=\left\{\begin{array}{c}
2 x+5, \text { if } x \leq-2 \\
-4, \text { if }-2<x<3 \\
\frac{2}{3} x-2, \text { if } x \geq 3
\end{array}\right.
$$

a. Find $f(-4)$
b. Find $f(-2)$
c. Find $f(0)$
d. Find $f(2)$

e. Find $f(3)$
f. Find $f(6)$
29. Write a piecewise function for the following graph:

$$
f(x)=\left\{\begin{array}{cl}
x^{2}, & \text { if } \\
6, & \text { if } \\
10-x, & \text { if }
\end{array}\right.
$$


30. Write a piecewise function for the following graph:


## Unit 4: Trigonometric Representations \& Modeling

31. Give the EXACT value for the six trigonometric values of $\theta$.

| $\sin \theta=$ | $\sec \theta=$ |
| :--- | :--- |
| $\cos \theta=$ | $\csc \theta=$ |
| $\tan \theta=$ | $\cot \theta=$ |



13
32. Given that $\theta$ lies in quadrant IV and $\cos \theta=\frac{5}{13}$, find...
a. $\sin \theta$
b. $\tan \theta$
33. Convert $130^{\circ}$ from degrees to radians.
34. Convert $\frac{4 \pi}{5}$ from radians to degrees.

Find the reference angle in degrees $\qquad$

Find a positive coterminal angle in degrees: $\qquad$

Find a negative coterminal angle in degrees: $\qquad$

Find the reference angle in degrees $\qquad$

Find a positive coterminal angle in degrees: $\qquad$

Find a negative coterminal angle in degrees: $\qquad$
37. Find the exact value (no calculator) for the following trig functions if $\cot =-\frac{20}{21}$ and the terminal side is in quadrant IV.

$$
\sin \theta=\ldots \quad \cos \theta=\ldots \quad \tan \theta=\ldots
$$

38. Given an angle with measure $150^{\circ} \ldots$
a. Sketch the angle in standard position.
b. Determine the quadrant the terminal side lies in. $\qquad$
c. Find the measure of the reference angle. $\qquad$
d. Draw a reference triangle \& evaluate all 6 trig functions.
$\sin 150^{\circ}=$
$\cos 150^{\circ}=$
$\qquad$
$\tan 150^{\circ}=$ $\qquad$
$\csc 150^{\circ}=$ $\qquad$
$\sec 150^{\circ}=$ $\qquad$
$\cot 150^{\circ}=$ $\qquad$
39. Simplify: $\sin ^{2} \theta-3+\cos ^{2} \theta$
40. Verify: $\sin \theta \cot \theta=\cos \theta$
41. As I prepared to come home from Charleston, SC, my family waited for me at the airport. They noticed that my plane was 21,000 feet above the ground, the angle of elevation was $13^{\circ}$.
a. How far was I still away from my family?
b. What is the horizontal distance that I was from the airport?

## Unit s: Graphing and Modeling Trigonometric Equations

42. What is the period of the graph represented by the equations below?
a. $f(x)=\cos (4 x)$
b. $f(x)=3 \sin \left(\frac{1}{2} x\right)$
c. $f(x)=4 \cos (x)$
43. What is the amplitude of graph represented by the equations below?
a. $f(x)=4 \sin (3 x)+5$
b. $f(x)=\cos (x)-1$
c. $f(x)=-3 \sin 4 x$
44. What is the horizontal shift of the equation $y=-2 \cos (x+\pi)-1 ?$
45. What is the vertical shift of the equation $y=2 \sin (x-\pi)+3$ ?
46. Given the function $y=2 \sin (x)-3$, fill in the following blanks and graph:

Amplitude: $\qquad$ Vertical Shift: $\qquad$

Period: $\qquad$

Phase/Horizontal Shift: $\qquad$ Range: $\qquad$

47. Given the function $y=-\cos (2 x)$, fill in the following blanks and graph:

Amplitude: $\qquad$ Vertical Shift: $\qquad$ Period: $\qquad$

48. Given the function $=2 \sin \left(\frac{1}{2} x\right)+1$, fill in the following blanks and graph: Amplitude: $\qquad$ Vertical Shift: $\qquad$ Period: $\qquad$

Phase/Horizontal Shift: $\qquad$ Range: $\qquad$

49. Using the graph to the right, identify the:
a. Amplitude
b. Period
c. Horizontal shift

d. Vertical Shift
e. Range
f. Equation
50. A fisherman noticed that the height of a bobber oscillated from 6 to 10 feet every 4 seconds. Identify each of the following
a. Midline
b. Amplitude
c. Period
d. Equation (express this function in terms of sine)
51. Write an equation to best represents the following situations:
a. The time between high tides is 8 hours. The high-tide depth is 12 feet and the low-tide depth is 4 feet.
b. Mrs. Kelleher is pushing her daughter on a swing. When she starts the swing at its highest point, her daughter is 6 feet above the ground. At the lowest point, the swing is 2 feet above the ground. It takes approximately 2 seconds for the swing to leave and come back to Mrs. K.
52. Write the equation that corresponds with each graph below.
a.

b.


