\qquad

Per: ___ Date: \qquad

Unit 4 Test Study Guide

Show all evidence (drawings, calculations, etc.) of how you arrived at your answers. All answers should be exact, simplified, and rationalized - no decimals unless the individual question specifies otherwise.

1. Identify a coterminal angle that is between 0° and 360°, and state in which quadrant it lays.
a. 1670°
b. -326°
2. Convert 146° to radian measure.
3. Convert $\frac{9 \pi}{4}$ to degree measure.
4. Evaluate the following by drawing the appropriate reference triangle:
a. $\sin \left(\frac{\pi}{2}\right)=$
b. $\cos 495^{\circ}=$
c. $\sec 270^{\circ}=$
d. $\cot -135^{\circ}=$
5. If θ is in Quadrant IV and $\tan \theta=-\frac{5}{12}$, find the exact value for $\sin \theta$.
6. If θ is an angle in standard position whose terminal side lies in Quadrant II, and $\sec \theta=-\frac{7}{5}$, find the values of the trigonometric functions for θ.
$\sin \theta=$
$\cos \theta=$
$\csc \theta=$
$\sec \theta=-\frac{7}{5}$
$\tan \theta=$
$\cot \theta=$
7. Find the exact values for the following trigonometric functions for an angle θ in standard position if a point with coordinates $(-3,2)$ lies on the terminal side.
a. $\sin \theta=$ \qquad
b. $\sec \theta=$ \qquad
c. $\tan \theta=$ \qquad
\qquad

Per: __ Date: \qquad
8. Find the exact values of the trigonometric functions for $\angle R$ in the triangle below.
a. $\sin R=$ \qquad
b. $\cos R=$ \qquad
c. $\cot R=$ \qquad

9. Solve the triangle if $Q=42^{\circ}$ and $r=13$. Round your answers to the nearest tenth.

10. Solve the triangle if $q=14$ and $r=7.7$. Round your answers to the nearest tenth.

Per: __ Date:
11. Frida is attempting to measure the height of a tree. If she walks 15 feet away from the tree, the angle of elevation to the top of the tree is 56°. How tall is the tree?
12. Ron is building a ramp to make a building wheelchair accessible. The ramp needs to be 24 inches in length with a rise of 4.5 inches. Find the angle of elevation.
13. Simplify: $4\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-2$
14. Verify: $\cos \theta \cdot \csc \theta+\tan \theta \cdot \cot \theta=\cot \theta+1$

