Integrated Math III

Name: _____

Per: _____ Date: _____

Unit 6 Test Study Guide Take note of NON-CALCULATOR questions

1. Write each polynomial in standard form and classify by degree and number of terms: (NON-CALC)

a.
$$x^2 - 4$$
 b. $x^3 - 4x^3 + 6x^3$

- c. $x^2 x^3 x^4 + 5x^3$ d. 172
- 2. Solve the following polynomial equations.

c.
$$(x-3)(x^2-1) = 0$$

d. $(x^2-25)(x^2+5x+4) = 0$

e.
$$10x^3 + 5x^2 - 2x - 1 = 0$$
 f. $\sqrt{x+7} = (x-1)^2$ (hint: use your calculator!)

g. $5x^2 = 20x$ h. $4x^2 - 15x - 25 = 0$

3. Is (4x + 3) a factor of $(12x^3 - 11x^2 + 9x + 18)$? 4. Is x = -1 a solution of $(3x^3 + 5x - 1)$?

5. The polynomial $g(x) = x^3 - 9x^2 + 26x - 24$ has values in the table provided below.

x	-2	-1	0	1	2
<i>g</i> (<i>x</i>)	-120	-60	-24	-6	0

- a. What is the x-intercept?
- b. Use the table to help you write the polynomial so it is in factored form. (Hint: use the x-intercept and an area model to divide)

- c. Graph the polynomial.
- 6. Use the <u>area model</u> to divide and solve the problem below.

a. If the polynomial $h(x) = -x^3 - 16x^2 - 75x - 108$ has the x-intercept x = -4. Find all other xintercepts of the polynomial. Write the polynomial in factored form and graph it.

7. Graph the following polynomials. Be sure to consider multiplicity (repeating x-intercepts) (NON-CALC)

- 8. Sketch the end behavior of the following polynomial functions. (NON-CALC)
 - a. $x^5 x^7$ b. $2x 5 + x + 2 x^3$ c. $x^4 7 + x$

9. Given the following graphs, determine the information below. (NON-CALC)

b. (NON-CALC)

End Behavior:

10. Given the following functions, solve for their inverses and then verify the results graphically.

b.
$$h(x) = \frac{1}{5}(x+6)$$

11. Graph each of the polynomial below.

 $f(x) = -x(x-2)^2(x+3)$

Classify (by degree):

Degree: _____ Even / Odd; LC:____ + / -

End Behavior:

Maximum number of turns:____

 			_	_			_

x-intercepts:	 y–intercept:	

Verify that each of your x-intercepts are correct using the Factor/ Remainder theorems:

Create an XY table with all intercepts included

12. Graph the polynomial below. *Hint: factor first.*

 $f(x) = x^3 + 7x^2 + 16x + 12$

Classify (*by degree & term*): Degree: _____ Even / Odd; LC:____ + / -

End Behavior:

Maximum number of turns:_____

Use Polynomial Division to FACTOR COMPLETELY

x-intercepts: _____

y–intercept: _____

Verify that each of your x-intercepts are correct using the Factor/ Remainder theorems: