\qquad
\qquad Date: \qquad

Unit 6 Test Study Guide

Take note of NON-CALCULATOR questions

1. Write each polynomial in standard form and classify by degree and number of terms: (NON-CALC)
a. $x^{2}-4$
b. $x^{3}-4 x^{3}+6 x^{3}$
c. $x^{2}-x^{3}-x^{4}+5 x^{3}$
d. 172
2. Solve the following polynomial equations.
c. $(x-3)\left(x^{2}-1\right)=0$
d. $\left(x^{2}-25\right)\left(x^{2}+5 x+4\right)=0$
e. $10 x^{3}+5 x^{2}-2 x-1=0$
f. $\sqrt{x+7}=(x-1)^{2} \quad$ (hint: use your calculator!)
g. $5 x^{2}=20 x$
h. $4 x^{2}-15 x-25=0$
3. Is $(4 x+3)$ a factor of $\left(12 x^{3}-11 x^{2}+9 x+18\right)$?
4. Is $x=-1$ a solution of $\left(3 x^{3}+5 x-1\right)$?
5. The polynomial $g(x)=x^{3}-9 x^{2}+26 x-24$ has values in the table provided below.

x	-2	-1	0	1	2
$g(x)$	-120	-60	-24	-6	0

a. What is the x-intercept?
b. Use the table to help you write the polynomial so it is in factored form.
(Hint: use the x-intercept and an area model to divide)

Factored Form: $g(\mathrm{x})=$ \qquad

c. Graph the polynomial.
6. Use the area model to divide and solve the problem below.
a. If the polynomial $h(x)=-x^{3}-16 x^{2}-75 x-108$ has the x -intercept $x=-4$. Find all other $\mathrm{x}-$ intercepts of the polynomial. Write the polynomial in factored form and graph it.

7. Graph the following polynomials. Be sure to consider multiplicity (repeating x-intercepts) (NON-CALC)
a. $f(x)=(x-2)(x-3)^{2}$
b. $g(x)=-(x+1)^{2}(x-2)^{2}$

8. Sketch the end behavior of the following polynomial functions. (NON-CALC)
a. $x^{5}-x^{7}$
b. $2 x-5+x+2-x^{3}$
c. $x^{4}-7+x$
9. Given the following graphs, determine the information below. (NON-CALC)
a.
End Behavior:

$\begin{array}{ll}\text { Leading Coefficient Sign: } & \text { Degree of Function: } \\ \text { x-intercepts: } & \text { Factors: } \\ \text { Equation in Factored Form: } & \\ \text { Y-intercept: } & \text { Relative Maximum(s): } \\ \text { Relative Minimum(s): } & \text { Decreasing Intervals: }\end{array}$

b. (NON-CALC)

End Behavior:	
Leading Coefficient Sign:	Degree of Function:
X-intercepts:	Factors:
Equation in Factored Form:	
Y-intercept:	
Relative Minimum(s):	Relative Maximum(s):
Increasing Intervals:	Decreasing Intervals:

10. Given the following functions, solve for their inverses and then verify the results graphically.
a. $h(x)=3(x-1)$

b. $h(x)=\frac{1}{5}(x+6)$

11. Graph each of the polynomial below.

$$
f(x)=-x(x-2)^{2}(x+3)
$$

Classify (by degree):
Degree: \qquad Even / Odd; LC:___ + -

End Behavior:

Maximum number of turns: \qquad

x-intercepts: \qquad y-intercept: \qquad

Verify that each of your x-intercepts are correct using the Factor/ Remainder theorems:

Create an XY table with all intercepts included
12. Graph the polynomial below. Hint: factor first.

$$
f(x)=x^{3}+7 x^{2}+16 x+12
$$

Classify (by degree \& term):
Degree: \qquad Even / Odd; LC:___ + -

End Behavior:

Maximum number of turns: \qquad

Use Polynomial Division to FACTOR COMPLETELY

x-intercepts: \qquad y-intercept: \qquad

Verify that each of your x-intercepts are correct using the Factor/ Remainder theorems:

